Tracking the Spin Period Evolution of Accretion-Powered Pulsars

family given Hu Chin-Ping (胡 欽評, フー チンピン) 京都大学 理学研究科 宇宙物理学教室 JSPS International Research Fellow

Accretion Power

- Energy source of an accreting compact object: gravitational energy of accreting matter.
 - For a mass accretion rate \dot{m} , the available power is

$$P = \eta \dot{m} c^2$$

- Accretion efficiency $\eta \sim 0.1$ for an NS and $\eta \sim 0.05-0.5$ for a BH.
 - Thin disk
- Much higher than nuclear fusion $\eta \sim 10^{-4}$
- Emit strong X-rays

Roche-Lobe Overflow

Wind Accretion

Enoto et al. (2014)

© ESA

Be X-ray Binary

Accretion-Powered Pulsar

Magnetic field

Spin-up the NS

Millisecond Pulsar

Recycled Pulsar

First MSP in LMXB

- Transient Source
- Discovered in 1996
- Pulsation discovered in 1998
- Spin = 2.5 ms
- Orbital period = 2hr

Wijnands & van der Klis (1998)

Transformers

- PSR J1023+0038
- IGR J18245-2452/PSR J1824-2452I
- XSS J12270-4859

Table 1 | Spin and orbital parameters of IGR J18245-2452 and PSR J1824-2452I

Parameter	IGR J18245–2452	PSR J1824-24521	
Right ascension (J2000)	18 h 24 min 32.53(4) s		
Declination (J2000)	-24° 52′ 08.6(6)″		
Reference epoch (MJD)	56386.0		
Spin period (ms)	3.931852642(2)	3.93185(1)	
Spin period derivative	$< 1.3 \times 10^{-17}$		
Root mean square of pulse time delays (ms)	0.1		
Orbital period (h)	11.025781(2)	11.0258(2)	
Projected semimajor axis (light-seconds)	0.76591(1)	0.7658(1)	
Epoch of zero mean anomaly (modified Julian date)	56395.216893(1)		
Eccentricity	≤10 ⁻⁴		
Pulsar mass function (M_{\odot})	$2.2831(1) \times 10^{-3}$	$2.282(1) \times 10^{-3}$	
Minimum companion mass (M_{\odot})	0.174(3)	0.17(1)	
Median companion mass (M_{\odot})	0.204(3)	0.20(1)	

Papitto et al. (2013)

Black Widows & Redbacks

- Black Widows: ${
 m M_c} < 0.1~M_{\odot}$
- Redbacks: $M_c \sim 0.2 0.4 M_{\odot}$
- Intra-binary shock
- Heating/evaporation

Stappers et al. (2003)

Search for Gamma-ray MSPs

Extremely Weak Field

Weak Magnetic field

X-ray Burst & Burst QPO

Motta et al. (2011)

Chakrabarty et al. (2003)

Nuclear Powered Pulsar

Strohmayer & Markwardt (1999)

Photospheric Radius Expansion

- Mass-Radius relation
- Standard candle for distant measurement

Torque Reversal – 4U 1626-67

Torque Reversal

Disk-magnetosphere coupling

Camero-Arranz et al. (2010)

Cen X-3

- Before BATSE: $\dot{\nu} = 8 \times 10^{-13}$ Hz s⁻¹, 5 times smaller than the theoretical prediction.
- After BATSE: steady spin-up and spin-down with a much larger rate and 10-100 day timescale.
- Not well understood (equilibrium? warp disk? disk-magnetosphere coupling? change of disk state?)

BATSE Monitoring

Fermi GBM Monitoring

Bildsten et al. (1997)

Wind Fed Systems

- OAO 1657-415
- Transition between disk-wind and direct-wind accretion?

Corbet Diagram

Enoto et al. (2014)

Spin-Superorbital Connection

- Her X-1
 - $P_{spin} = 1.24 \text{ s}^{-1}$
 - $P_{orb} = 1.7 \text{ days}$
 - $P_{sup} = 35$ days
 - $M_c = 2M_{\odot}$

© Dr. Lodato

Still & Boyd (2004)

Her X-1

Staubert et al. (2009)

© Fermi GBM Team

Her X-1

- Two synchronized "Clocks"
 - NS free precession more stable "pulse profile clock"
 - Disk Precession less stable "superorbital turn-on clock"
- This synchronization break down during AL3.
 - AL extremely warp (> 90°)?
 - Spin-superorbital connection feedback between disk precession and NS free precession?

Staubert et al. (2013)

Staubert et al. (2013)

4U 0114+650

- High-Mass X-ray Binary
- Pulse Period ~ 9700s
- Orbital Period ~ 11.6 days (eclipse?)
- Superorbital Period 30.7 days

04

superorbita

Wen et al. (2006)

Farrell et al. (2008)

Orbital Profile Variability

Spin Period Evolution

RXTE ASM

Swift BAT

Spin-Superorbital Connection

	Table 2Five Spin Evolution Epochs of 4U 0114+650	
Time Interval (MJD-50000)	$(10^{-7} \mathrm{s} \mathrm{s}^{-1})$	Flux Trend
0-1000	4 ± 3	Increase
1000-2500	-15.0 ± 0.7	Decrease
3700-5000	-16.8 ± 0.8	Decrease
5000-6000	6 ± 2	Increase
6000-7000	-17 ± 1	Decrease
3500–7700	-5.6 ± 0.6	

Possible Explanation

- Fast-wind epoch
 - Strong, fast, anisotropic wind
 - Orbital dependent(?)
 - Dominated by directwind accretion
 - Spin-down/random walk
 - Low superorbital amplitude

- Slow-wind epoch
 - Weak wind, luminosity decreases
 - Orbital independent(?)
 - Dominated by disk-wind accretion
 - Secular spin-up
 - High superorbital amplitude

SMC X-1

- High-Mass X-ray Binary
 - Pulse Period ~ 0.7s
 - Orbital Period ~ 3.9 days (eclipse)
 - Superorbital Period 40 60 days
- Super-Eddington source.

Hu et al. (2011)

Clarkson et al. (2003)

HHT

Power

200 F

240-360 days

0.004

Frequency(1/d)

0.005

0.006

Hu et al. (2011)

ģ

9

ASM vs BAT vs MAXI

Fractional Variability vs Cycle Length

Spin-Superorbital Connection

~20k x 30k pairs of f and \dot{f} , 20k events

Stacked pulse profile with 750 d MAXI data

Ultraluminous X-ray Sources

- ULXs: $L > L_{Edd}$ of a $10~M_{\odot}$ BH
 - $L_{Edd} = \frac{4\pi cGMm_p}{\sigma_T} \sim 1.3 \times 10^{38} \left(\frac{M}{M_{\odot}}\right) \text{ erg s}^{-1}$, where m_p is the proton mass, σ_T is the Thomson cross section, and M is the BH mass.

Super-Critical Accretion

Slim disk or Accretion flow

Ultraluminous Pulsars

LETTER

doi:10.1038/nature13791

An ultraluminous X-ray source powered by an accreting neutron star

M. Bachetti^{1,2}, F. A. Harrison³, D. J. Walton³, B. W. Grefenstette³, D. Chakrabarty⁴, F. Fürst³, D. Barret^{1,2}, A. Beloborodov⁵, S. E. Boggs⁶, F. E. Christensen⁷, W. W. Craig⁸, A. C. Fabian⁹, C. J. Hailey¹⁰, A. Hornschemeier¹¹, V. Kaspi¹², S. R. Kulkarni³, T. Maccarone¹³, J. M. Miller¹⁴, V. Rana³, D. Stern¹⁵, S. P. Tendulkar³, J. Tomsick⁶, N. A. Webb^{1,2} & W. W. Zhang¹¹

Black Hole vs Neutron Star

Magnetic Field & Luminosity

- The luminosity of an NS can have $L > L_{Edd}$ if the surface magnetic field is very high
 - The electron scattering cross sections is much lower than the Thomson cross section $(L_{Edd} = \frac{4\pi cGMm_p}{\sigma_T})$.
 - $B \sim 10^{15}$ G can have $L \sim 10^{41}$ erg/s
 - *P_{spin}* inferred B field is much lower

Name	M82 X-2	NGC 7793 P13	NGC 5907 ULX1	NGC 300 ULX1
Peak L (erg/s)	$1.8 imes 10^{40}$	5×10^{39}	10 ⁴¹	5×10^{39}
$P_s(s)$	1.37	0.42	1.13	40 - 20
$\dot{\nu}(s^{-2})$	10^{-10}	4×10^{-11}	4×10^{-9}	$10^{-9} - 10^{-10}$
$P_{orb}(day)$	2.51	65(?)	~5.3	?
$P_{sup}(day)$	~60	~2700(?)	78	?

Super-Critical Accretion

- Super-critical accretion?
 - Eddington limited accreting NS with magnetar-level B field have $P \gtrsim 0.1$ s.
 - Time resolution of XMM-Newton (~0.1s) and Chandra (3s)
 - Low B-field ULPs with super-critical accretion can have much shorter period.
 - NuSTAR, NICER, and future eXTP...

Spin-Orbital-Superorbital Relation

- If the 65-d modulation is orbital and the 3000 d modulation is superorbital, NGC 7793 P13 could be a Be X-ray binary.
 - Roche-lobe size is larger than the Companion star radius
 - Search for the feature of Be star?
 - The magnetar argument may not be valid because the accretion mechanism may not be disk-fed.

Summary

- Neutron stars in binary systems show a variety of timing properties.
 - MSPs, burst QPOs, black widows, red backs reveal the evolution of NS in binary systems.
 - Spin frequency evolution gives hints about accretion mechanisms and the connection between the NS, B-field, and disk.
- Remaining open questions
 - Origin of timing noise in accreting system?
 - Upper limit of NS spin?
 - Equation of state of NSs?
 - Torque reversal?
 - Free precession vs disk warp?

```
•
```

Thank You