~中性子星の観測と理論~ 研究活性化ワークショップ 2019 京都大学 2019年2月18-20日

降着型パルサーのX線観測と放射モデル

小高 裕和 (東京大学)

アウトライン

- ・降着型パルサーの基本的な描像
- ・放射の物理過程
- ・
 か射モデルの検証: Vela X-1
- ・ちょっと一息:SMC X-1
- ・将来の展望:X線偏光観測

Odaka et al. 2013, 2014

Kubota, Odaka et al. 2018

中性子星

- ・地上では到底実現できない強い磁場が巨視的なスケールで存在
 B: 10⁸-10¹⁵ G
- ・深い重力ポテンシャル
- ・非常に強い放射
- ・高密度物質、核物質の状態方程式

極限環境のユニークな物理実験室であり、究極的な物理条件 のもとで、物質がいかに振る舞うかを見ることができる。

Wind-fed accretion

Disk-fed accretion

降着流の構造

e.g. Becker & Wolff 2007

プラズマは磁力線に沿って落下

- ・速度は光速の50%に達する
- ・中性子星表面に降着するため、
 なんらかの機構で減速し、ショックを形成する。

ショックの後、プラズマは高温になり、X線を放射する。 だが、物理的理解の基礎になるX線放射機構自体がよくわかっ ていなかった。

降着駆動パルサーの特徴

- ・ 強い表面磁場: 10¹²-10¹³ G
- ·X線天文学黎明期から詳しく研究されてきた。←とても明るい
- ・ 連星系の性質や降着流の大まかな構造はよくわかっている。
- ・ X線スペクトルのサイクロトロン共鳴散乱による吸収構造
 →磁場の直接測定
- ・最近、ULXからパルスが検出され、あらためて重要性が認識 Bachetti et al. 2014

系の構造が大まかにわかっているので、強磁場における物質 や放射の振る舞いを研究するのに最適である。

Corbet Diagram

Enoto et al. 2014

ひとくちに降着型パルサーといってもかなりいろいろある。 それでも、磁場に束縛された円筒状の降着流という基本的な フレームワークは維持されるはず。

X線放射の特徴

Odaka et al. 2013

<u>Vela X-1のX線スペクトル</u>

- ✓ power law
 photon index~ -1
- quasi-exponential cutoff~20 keV
- Cyclotron resonance
 ~50 keV: first harmonic
 ~25 keV: fundamental
- Atomic lines
 from the companion's
 stellar wind/atmosphere

広帯域スペクトルの評価法

物理的な放射機構が明らかになっていないため、従来、現象論的 モデルでのみ解析が行われてきた。

1. High energy cutoff model (White+ 1983)

$$\frac{dN}{dE} = \begin{cases} AE^{-\Gamma} & (E \le E_c) \\ AE^{-\Gamma} \exp\left(-\frac{E - E_c}{E_f}\right) & (E > E_c) \end{cases} \quad \text{cutoff energy 7} \\ (E > E_c) & ÿ ÿ ※ \end{cases}$$

2. Fermi-Dirac cutoff model (Tanaka 1983, Kreykenbohm+ 1999)

$$\frac{dN}{dE} = AE^{-\Gamma} \frac{1}{\exp\left(\frac{E - E_c}{E_f}\right) + 1}$$

広帯域スペクトルをよく表現できる

3. NPEX model (Mihara 1995, Makishima+ 1999)

$$\frac{dN}{dE} = (A_1 E^{-\Gamma} + A_2 E^2) \exp\left(-\frac{E}{E_f}\right)$$
広帯域スペクトルをよく表現できる
扱いが容易
熱コンプトン放射との関係が見やすい

Comptonization Model

Becker & Wolff 2007により物理的な放射モデルは大きく前進

- Thermal & bulk Comptonization
- ・1次元の光子輸送方程式
- 磁場による散乱断面積の抑制

$$\sigma_{\rm ord}(\epsilon,\varphi) = \sigma_{\rm T} \left[\sin^2 \varphi + k(\epsilon) \cos^2 \varphi \right],$$

$$\sigma_{\rm ext}(\epsilon,\varphi) = \sigma_{\rm T} k(\epsilon) + \sigma_l \phi_l(\epsilon,\epsilon_c,\varphi),$$

$$k(\epsilon) \equiv \begin{cases} 1, & \epsilon \ge \epsilon_c, \\ (\epsilon/\epsilon_c)^2, & \epsilon \le \epsilon_c. \end{cases}$$

Arons, 1987

Wolff et al. 2016

Monte Carlo Simulation

観測的な観点からは、1次元モデルでは不十分な面がある。

平均スペクトルだけではなく、

- ・自転位相分解スペクトル
- ・偏光
- も計算したい。

<u>Monte Carloなら</u>

- ・ 空間3次元。放射の方向を正確に扱える。
- 1光子ずつ追える。光子の偏光情報を持たせられる。
- ・光子の系からの脱出を正確に扱える。

3D Radiation Model

Becker & Wolff 2007と同等の放射過程を MONACO (Odaka et al. 2011) に実装した。 Odaka et al. 2014

ー様な円筒でのシミュレーション結果

放射モデルの検証: Vela X-1

|激しい時間変動←要因はよくわかっていない|

そのX線スペクトルは降着プラズマの物理条件の変化を反映する

145 ks

Odaka et al. 2013

放射モデルの検証: Vela X-1

時間分解(~2000 s)のスペクトルからプラズマの物理的関係を 抽出できる。

Comptonizationだとすると、降着率と光学的厚さに自然な相関

モンテカルロモデルによるパラメタ推定

$\frac{L_{\rm obs}}{({\rm erg \ s}^{-1})}$	<i>r</i> ₀ (m)	$\frac{L_0}{(\text{erg s}^{-1})}$	A_1 (ph s ⁻¹ cm ⁻² keV ⁻¹)	Γ	A_2 (ph s ⁻¹ cm ⁻² keV ⁻¹)	<i>E_f</i> (keV)	L_X (erg s ⁻¹)	A_2/A_1
1.5×10^{36}	150	9.19×10^{35}	3.4×10^{-2}	0.58	0.0	17	1.2×10^{36}	0
3.0×10^{30}	150	1.68×10^{30}	5.3×10^{-1}	0.34	2.9×10^{-4}	6.6	3.0×10^{30}	5.5×10^{-4}
4.5×10^{36}	200	2.37×10^{36}	5.5×10^{-1}	0.17	4.4×10^{-4}	6.6	4.4×10^{36}	8.0×10^{-4}
6.0×10^{36}	300	3.51×10^{36}	6.7×10^{-1}	0.03	4.4×10^{-4}	6.9	6.2×10^{36}	6.6×10^{-4}

降着パルサーの放射は磁場による断面積の抑制を受けた熱・バルク コンプトン散乱でよく説明できる

再びCorbet Diagram

Enoto et al. 2014

Vela X-1はwind-fed accretionだった。 X線光度Lxは~10³⁶ erg s⁻¹ Disk-fed pulsarsも面白そうである。Lx~10³⁸ erg s⁻¹ 明るい!

SMC X-1

- 「古典的」な降着駆動パルサーの中で、最大の光度 Lx ~ 5×10³⁸ erg s⁻¹ Mildly super-Eddington SMCにあるので、距離の誤差が小さい
- ・パルス周期: 0.71 s
- · 軌道周期: 3.89 d
- Super-orbital modulation : ~50 d
 円盤の歳差運動か?
- ・ULXパルサーとの関係???

MAXI lightcurveとSuzakuの観測

赤方偏移した鉄吸収線の発見

Kubota, Odaka et al. 2018, ApJL, 868, L26

- Redshift: 4000±1300 km s⁻¹
- ・ 落下する降着円盤コロナに付随した高電離プラズマか?

次に観測的に目指したいもの:偏光

- ・ 強磁場中の散乱により、放射は強く偏光する
- ・ 自転とともに偏光の様子が変わるため、磁場のジオメトリや
 プラズマの状態など、様々な観測的制限が得られるはず。

-150 -100 -50 0 50 100 150

Φ[deg]

Hitomi-SGDによるCrabの観測

X線の偏光観測は不定性が大きく 難しかったが、最近、精度が向 上した観測例が増えつつある。

X線偏光観測の幕開け

Satellite/instruments	Energy band	Polarization angle [°]	Polarization fraction [%]	Exposure time	Phase	Supplement
PoGO+ (Balloon exp.)	20–160 keV	131.3 ± 6.8	20.9 ± 5.0	92 ks	All	Chauvin et al. (2017)
Hitomi/SGD	60–160 keV	$110.7^{+13.2}_{-13.0}$	22.1 ± 10.6	5 ks	All	This work
AstroSat/CZTI	100–380 keV	143.5 ± 2.8	32.7 ± 5.8	800 ks	All	Vadawale et al. (2017)
INTEGRAL/SPI	130–440 keV	117 ± 9	28 ± 6	600 ks	All	Chauvin et al. (2013)
INTEGRAL/IBIS	200–800 keV	110 ± 11	47^{+19}_{-13}	1200 ks	All	Forot et al. (2008)

Hitomi Collaboration 2018

硬X線偏光測定

いろいろ方法はありうるが、
 光電吸収型で半導体撮像検出器を検討中。
 CubeSatで実現できないか?

まとめと今後の展望

- 降着型パルサーの放射機構はよくわかっていないかったが、
 磁場による断面積の抑制を受けたthermal & bulk
 Compotonizationでよく説明できる。
- 系の物理的理解のためには、(現象論的でなく)物理的な放射
 モデルを作って観測と比較することが大切である。
- Super-Eddington pulsar SMC X-1から赤方偏移した鉄吸収線を
 発見した。

<u>今後の展望</u>

- ・磁場中の放射過程の精密化
- ・幅広いプロパティの天体に適用
- · 硬X線偏光測定の実現