パルサー光度曲線の 理論解析

Hajime SOTANI (NAOJ)

photon trajectory & deflection angle

• metric:
$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -A(r)dt^2 + B(r)dr^2 + C(r)(d\theta^2 + \sin^2\theta d\psi^2)$$

• deflection angle and impact parameter:

.

Feb. 18-20/2019 ~中性子星の観測と理論~研究活性化ワークショップ 2019@京都大学

critical value of Ψ photon trajectory bending angle as Ψ increases, α also increases h • - at $\alpha = \pi/2$, Ψ is maximum, observer R which is denoted by $\Psi_{\rm cri}$ as the gravitational field • 2.0 becomes stronger, $\Psi_{\rm cri}$ increases - invisible zone exists. 1.5 $\psi_{ m cri}/\pi$ if $\Psi_{\rm cri} < \pi$ - no invisible zone, if $\Psi_{\rm cir} > \pi$ \rightarrow multi photon paths 1.0 0.5 0.15 0.25 0.30 0.35 0.10 0.20 Feb. 18-20/2019 ~中性子星の観測と理論~研究活性化ワークショップ 2019@ 2 M/R

NS models

 we consider three NS models with M/M⊙=1.8, 2.0, & 2.21, fixing the radius to be 10 km.

- $\psi_{\rm cri} = 0.908\pi$, $\psi_{\rm cri} = 1.078\pi$, $\psi_{\rm cri} = 1.604\pi$

observer

(HS & Miyamoto ⁴18)

pulse profile from NSs

- adopting a pointlike spot approximation (Beloborocov O2),
- assuming the black body emission from the hot spot with isotropic intensity ${\it I}_{\rm O}$
- Flux from area of $S_0 \coloneqq \int dS = 4R^2 \delta \psi \delta \phi \sin \psi$: $F_*(\psi) = F_0 \sin \alpha \cos \alpha \frac{d\alpha}{d\psi}$, $F_0 \coloneqq \frac{4I_0 A(R)R^2 \delta \psi \delta \phi}{D^2}$
- The observed flux: $F(\psi) = F_1 \cos \alpha \frac{d(\cos \alpha)}{d\mu}$ where $F_1 \coloneqq I_0 \frac{s\dot{A}(R)}{D^2}$
- Considering the observation of the pulse profile from rotating NS with angular velocity Ω with angles Θ & / rotational axis $\mu(t) = \sin i \sin \Theta \cos(\omega t) + \cos i \cos \Theta$ primary where $\mu = \cos \psi = n_p \cdot d$ observed flux from pulsar:

$$F_{\rm ob}(t) = F(t) + F_{\rm a}(t)$$

Feb. 18-20/2019 ~中性子星の観測と理論~研究活性化ワークショップ 10 和朝朝朝史学

how to observe the hot spots: $1.8M_{\odot}$

how to observe the hot spots: 2.0 M_{\odot}

- depending on the angles Θ & /
 - i) the primary has always 1 path, the antipodal has always 2 paths
 - ii) the primary has always 1 path, the antipodal has sometime 2 pathsiii) the both have sometime 2 paths
 - iv) the both hot spots have always 1 path

how to observe the hot spots: $2.21M_{\odot}$

- depending on the angles Θ & /
 - i) the primary has always 1 path, the antipodal has always 2 paths
 - ii) the primary has sometime 2 paths, the antipodal has always 2 pathiii) the both have sometime 2 paths
 - iv) the both hot spots have always 2 paths

behavior of F/F_{1} , adopted (i, Θ)

$$S_{0} \coloneqq \int dS = 4R^{2} \delta \psi \delta \phi \sin \psi \quad F_{*}(\psi) = F_{0} \sin \alpha \cos \alpha \frac{d\alpha}{d\psi} \quad F_{0} \coloneqq \frac{4I_{0}A(R)R^{2}\delta \psi \delta \phi}{D^{2}}$$
$$F(\psi) = F_{1} \cos \alpha \frac{d(\cos \alpha)}{d\mu} \quad \text{where} \quad F_{1} \coloneqq I_{0} \frac{sA(R)}{D^{2}}$$

Feb. 18-20/2019 ~中性子星の観測と理論~研究活性化ワークショップ 2019@京都大学

pulse profile from NSs

effect of rotation

- One should take into account
 - Doppler factor
 - time delay
- even though the neutron stars with the same M/R, the light curve also depends on R
- the modification of light curve
 - break the symmetry of (Θ, I)
 - break the symmety in time

Feb. 18-20/2019 ~中性子星の観測と理論~研究活性化ワークショップ 2019@京都大学

13

Feb. 18-20/2019 ~中性子星の観測と理論~研究活性化ワークショップ 2019@京都大学

conclusion

- We investigate the pulse profile of highly compact rotating NS for which the bending angle exceeds $\pi/2$ (M/R > 0.284).
- We make a classification of the number of path from the primary and antipodal hot spots, dpending on the angles (i, Θ).
- We find that the pulse profiles of highly compact NSs are qualitatively different from those for the standard NSs.

– In particular, F_{max}/F_{min} is significantly larger for highly compact NSs

- Light curve from a fast rotating NS depends on M/R and R.
- One would be able to constrain the EOS for NSs through the observations of pulse profiles with the help of the observational constraint on (i, Θ).