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the pulse profiles in [16], where we mainly focused on the
sensitivity of light curve to the background spacetime and
gravitational theories. Anyway, these past studies are only
concerned with stellar models with an invisible zone, i.e., a
part of the neutron-star’s surface that cannot be seen from a
distant observe. Actually, the compactness of most neutron
stars is not so high that the photon emitted from their
surface opposite to the observer is not bent enough.
The photon emitted from any position of neutron-star

surface, however, can reach the observer, if the compact-
ness is significantly high. Such a strong bending is
possible, although the region in the mass-radius plane is
limited (see Fig. 3), and the pulse profiles should be
different from those for the standard neutron stars.
Therefore, in this paper, we shall focus on the neutron
stars with high compactness and discuss the pulse emanat-
ing from their two hot spots associated with the magnetic
polar caps. As we will see, for the stellar models with high
compactness, the classification of photon paths is com-
pletely different from that obtained by Beloborodov [13].
Thus, first we will present such a classification for the
neutron-star model with high compactness, then we will
examine the pulse profiles for specific stellar models. As
the result, it will be shown that the pulse profiles from the
highly compact neutron stars are qualitatively different
from those for the standard neutron stars.
In this paper, we adopt the geometrized units c ¼ G ¼ 1,

where c and G are the speed of light and the gravitational
constant, respectively. The metric signature is ð−;þ;þ;þÞ.

II. PHOTON RADIATING FROM A HOT SPOT

The equation of motion for a photon emitted from a hot
spot on the neutron star has already been obtained in
Ref. [16]. Here, we just review it briefly. The metric of a
static spherically symmetric spacetime is generally given by

gμνdxμdxν ¼ −AðrÞdt2 þ BðrÞdr2

þ CðrÞðdθ2 þ sin2θdψ2Þ: ð1Þ

We assume the asymptotic flatness as AðrÞ → 1, BðrÞ → 1,
and CðrÞ → r2 as r → ∞. In this paper, we shall particu-
larly consider the Schwarzschild spacetime, for which the
metric functions are given by

AðrÞ ¼ 1 −
2M
r

; BðrÞ ¼ 1

AðrÞ
; CðrÞ ¼ r2: ð2Þ

We consider a photon radiating from a small hot spot on
the stellar surface, where the angle between the normal
vector at the hot spot and the direction toward the observer
is ψ , as shown in Fig. 1. Then, the angle at the stellar
surface r ¼ R is given by

ψðRÞ ¼
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where b is an impact parameter. Letting the emission angle
be α, which is the angle between the normal vector at the
hot spot and the direction of the photon radiation from the
hot spot, the impact parameter is given by

b ¼ sin α

ffiffiffiffiffiffiffiffiffiffiffi
CðRÞ
AðRÞ

s

: ð4Þ

One can numerically obtain the relation between ψðRÞ
and α for given R via Eqs. (3) and (4). The difference of
angles ψðRÞ − α, which is a bending angle, does not vanish
due to the light bending by the gravitation of neutron stars.
Angle ψðRÞ increases as α increases, and reaches a
maximum at α ¼ π=2. In particular, the maximum value
of ψðRÞ is denoted as ψ cri and depends on the compactness
of neutron star. In Fig. 2, the value of ψ cri is shown as a
function of the stellar compactness M=R. From this figure,
one can see that ψ cri becomes larger than π for the stellar
model with high compactness. In such a stellar model, the
invisible zone on the stellar surface disappears and the
photons radiated from any position on the stellar surface

FIG. 1. Image of the photon trajectory radiating from the stellar
surface. R and b denote the stellar radius and impact parameter,
respectively, while α is the emission angle at the position of ψ .

FIG. 2. The value of ψcri as a function of the stellar compact-
ness M=R. The vertical dotted-lines correspond to the stellar
models adopted in this study, whose compactness are respectively
M=R ¼ 0.2658, M=R ¼ 0.2953, and 0.3263 from left to right.
These models respectively correspond to the neutron stars with
M ¼ 1.8 M⊙, 2.0 M⊙, and 2.21 M⊙, fixing R ¼ 10 km, which
are marked with the circle, pulse, and cross in Fig. 3.
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where 

* depend on the theory of gravity 



critical value of Ψ  

•  asΨ increases, αalso increases 
–  at α=π/2, Ψ is maximum, 

which is denoted byΨcri 

•  as the gravitational field 
becomes stronger, Ψcri 

increases 
–  invisible zone exists, 

if Ψcri < π 

–  no invisible zone, 
if Ψcir > π 
à multi photon paths 
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ness is significantly high. Such a strong bending is
possible, although the region in the mass-radius plane is
limited (see Fig. 3), and the pulse profiles should be
different from those for the standard neutron stars.
Therefore, in this paper, we shall focus on the neutron
stars with high compactness and discuss the pulse emanat-
ing from their two hot spots associated with the magnetic
polar caps. As we will see, for the stellar models with high
compactness, the classification of photon paths is com-
pletely different from that obtained by Beloborodov [13].
Thus, first we will present such a classification for the
neutron-star model with high compactness, then we will
examine the pulse profiles for specific stellar models. As
the result, it will be shown that the pulse profiles from the
highly compact neutron stars are qualitatively different
from those for the standard neutron stars.
In this paper, we adopt the geometrized units c ¼ G ¼ 1,

where c and G are the speed of light and the gravitational
constant, respectively. The metric signature is ð−;þ;þ;þÞ.

II. PHOTON RADIATING FROM A HOT SPOT

The equation of motion for a photon emitted from a hot
spot on the neutron star has already been obtained in
Ref. [16]. Here, we just review it briefly. The metric of a
static spherically symmetric spacetime is generally given by

gμνdxμdxν ¼ −AðrÞdt2 þ BðrÞdr2

þ CðrÞðdθ2 þ sin2θdψ2Þ: ð1Þ

We assume the asymptotic flatness as AðrÞ → 1, BðrÞ → 1,
and CðrÞ → r2 as r → ∞. In this paper, we shall particu-
larly consider the Schwarzschild spacetime, for which the
metric functions are given by

AðrÞ ¼ 1 −
2M
r

; BðrÞ ¼ 1

AðrÞ
; CðrÞ ¼ r2: ð2Þ

We consider a photon radiating from a small hot spot on
the stellar surface, where the angle between the normal
vector at the hot spot and the direction toward the observer
is ψ , as shown in Fig. 1. Then, the angle at the stellar
surface r ¼ R is given by

ψðRÞ ¼
Z

∞

R

dr
C

!
1

AB

"
1

b2
−
A
C

#$−1=2
; ð3Þ

where b is an impact parameter. Letting the emission angle
be α, which is the angle between the normal vector at the
hot spot and the direction of the photon radiation from the
hot spot, the impact parameter is given by

b ¼ sin α

ffiffiffiffiffiffiffiffiffiffiffi
CðRÞ
AðRÞ

s

: ð4Þ

One can numerically obtain the relation between ψðRÞ
and α for given R via Eqs. (3) and (4). The difference of
angles ψðRÞ − α, which is a bending angle, does not vanish
due to the light bending by the gravitation of neutron stars.
Angle ψðRÞ increases as α increases, and reaches a
maximum at α ¼ π=2. In particular, the maximum value
of ψðRÞ is denoted as ψ cri and depends on the compactness
of neutron star. In Fig. 2, the value of ψ cri is shown as a
function of the stellar compactness M=R. From this figure,
one can see that ψ cri becomes larger than π for the stellar
model with high compactness. In such a stellar model, the
invisible zone on the stellar surface disappears and the
photons radiated from any position on the stellar surface

FIG. 1. Image of the photon trajectory radiating from the stellar
surface. R and b denote the stellar radius and impact parameter,
respectively, while α is the emission angle at the position of ψ .

FIG. 2. The value of ψcri as a function of the stellar compact-
ness M=R. The vertical dotted-lines correspond to the stellar
models adopted in this study, whose compactness are respectively
M=R ¼ 0.2658, M=R ¼ 0.2953, and 0.3263 from left to right.
These models respectively correspond to the neutron stars with
M ¼ 1.8 M⊙, 2.0 M⊙, and 2.21 M⊙, fixing R ¼ 10 km, which
are marked with the circle, pulse, and cross in Fig. 3.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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the pulse profiles in [16], where we mainly focused on the
sensitivity of light curve to the background spacetime and
gravitational theories. Anyway, these past studies are only
concerned with stellar models with an invisible zone, i.e., a
part of the neutron-star’s surface that cannot be seen from a
distant observe. Actually, the compactness of most neutron
stars is not so high that the photon emitted from their
surface opposite to the observer is not bent enough.
The photon emitted from any position of neutron-star

surface, however, can reach the observer, if the compact-
ness is significantly high. Such a strong bending is
possible, although the region in the mass-radius plane is
limited (see Fig. 3), and the pulse profiles should be
different from those for the standard neutron stars.
Therefore, in this paper, we shall focus on the neutron
stars with high compactness and discuss the pulse emanat-
ing from their two hot spots associated with the magnetic
polar caps. As we will see, for the stellar models with high
compactness, the classification of photon paths is com-
pletely different from that obtained by Beloborodov [13].
Thus, first we will present such a classification for the
neutron-star model with high compactness, then we will
examine the pulse profiles for specific stellar models. As
the result, it will be shown that the pulse profiles from the
highly compact neutron stars are qualitatively different
from those for the standard neutron stars.
In this paper, we adopt the geometrized units c ¼ G ¼ 1,

where c and G are the speed of light and the gravitational
constant, respectively. The metric signature is ð−;þ;þ;þÞ.

II. PHOTON RADIATING FROM A HOT SPOT

The equation of motion for a photon emitted from a hot
spot on the neutron star has already been obtained in
Ref. [16]. Here, we just review it briefly. The metric of a
static spherically symmetric spacetime is generally given by

gμνdxμdxν ¼ −AðrÞdt2 þ BðrÞdr2

þ CðrÞðdθ2 þ sin2θdψ2Þ: ð1Þ

We assume the asymptotic flatness as AðrÞ → 1, BðrÞ → 1,
and CðrÞ → r2 as r → ∞. In this paper, we shall particu-
larly consider the Schwarzschild spacetime, for which the
metric functions are given by

AðrÞ ¼ 1 −
2M
r

; BðrÞ ¼ 1

AðrÞ
; CðrÞ ¼ r2: ð2Þ

We consider a photon radiating from a small hot spot on
the stellar surface, where the angle between the normal
vector at the hot spot and the direction toward the observer
is ψ , as shown in Fig. 1. Then, the angle at the stellar
surface r ¼ R is given by

ψðRÞ ¼
Z

∞
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dr
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; ð3Þ

where b is an impact parameter. Letting the emission angle
be α, which is the angle between the normal vector at the
hot spot and the direction of the photon radiation from the
hot spot, the impact parameter is given by

b ¼ sin α

ffiffiffiffiffiffiffiffiffiffiffi
CðRÞ
AðRÞ

s

: ð4Þ

One can numerically obtain the relation between ψðRÞ
and α for given R via Eqs. (3) and (4). The difference of
angles ψðRÞ − α, which is a bending angle, does not vanish
due to the light bending by the gravitation of neutron stars.
Angle ψðRÞ increases as α increases, and reaches a
maximum at α ¼ π=2. In particular, the maximum value
of ψðRÞ is denoted as ψ cri and depends on the compactness
of neutron star. In Fig. 2, the value of ψ cri is shown as a
function of the stellar compactness M=R. From this figure,
one can see that ψ cri becomes larger than π for the stellar
model with high compactness. In such a stellar model, the
invisible zone on the stellar surface disappears and the
photons radiated from any position on the stellar surface

FIG. 1. Image of the photon trajectory radiating from the stellar
surface. R and b denote the stellar radius and impact parameter,
respectively, while α is the emission angle at the position of ψ .

FIG. 2. The value of ψcri as a function of the stellar compact-
ness M=R. The vertical dotted-lines correspond to the stellar
models adopted in this study, whose compactness are respectively
M=R ¼ 0.2658, M=R ¼ 0.2953, and 0.3263 from left to right.
These models respectively correspond to the neutron stars with
M ¼ 1.8 M⊙, 2.0 M⊙, and 2.21 M⊙, fixing R ¼ 10 km, which
are marked with the circle, pulse, and cross in Fig. 3.
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303 angle between the rotational and the magnetic axes, and i,
304 which is the angle between the rotational axis and the
305 direction to the observer, where Θ and i can be chosen in
306 such a way that i ≤ π=2 and Θ ≤ π=2 (see Fig. 3 in
307 Ref. [13]). Then, the value of μ ¼ cosψ for the primary
308 hot spot is varying with time as

μðtÞ ¼ sin i sinΘ cosðΩtÞ þ cos i cosΘ; ð22Þ

309310 because the value of μ is determined via μ ¼ np · d with the
311 normal vector at the primary hot spot (np) and the unit
312 vector pointing toward the observer (d) [13,31], where we
313 put t ¼ 0 when the primary hot spot comes to the closest
314 point to the observer, i.e., ψ becomes minimum. With
315 respect to the antipodal hot spot, due to the symmetry of the
316 system, the normal vector at the antipodal hot spot (na) is
317 given by na ¼ −np. Thus, the value of μ for the antipodal
318 hot spot (μ̄) is determined by μ̄ðtÞ ¼ na · d ¼ −μðtÞ as a
319 function of time. Here, for simplicity we assume that Ω is
320 small enough to neglect the frame dragging effect due to the
321 stellar rotation. In fact, the frame dragging effect could be
322 neglected for 1=T ≲ a few hundred Hz [12], where T
323 denotes the rotational period, i.e., T ¼ 2π=Ω. Then, the
324 pulse profile with the given angles Θ and i becomes
325 periodic, where the amplitude at t=T for 0.5 ≤ t=T ≤ 1
326 becomes the same as that at 1 − t=T. So, the figures for the
327 pulse profile from each stellar model as shown below are
328 plotted in the period of 0 ≤ t=T ≤ 0.5. In addition, from
329 Eq. (22), one can see that the pulse profile with ðΘ; iÞ ¼
330 ðθ1; θ2Þ is equivalent to that with ðΘ; iÞ ¼ ðθ2; θ1Þ for 0 ≤
331 θi ≤ π=2 with i ¼ 1 and 2.
332 The primary (antipodal) hot spot can be seen when μðμ̄Þ
333 is larger than cosψ cri. Thus, the flux from the primary
334 (antipodal) hot spot, ~F ( ~Fa), is calculated via Eq. (21) for

335μðμ̄Þ ≥ cosψ cri and becomes 0 for μðμ̄Þ ≤ cosψ cri. With
336~FðtÞ and ~FaðtÞ, the observed flux from the pulsar is
337determined as

FobðtÞ ¼ ~FðtÞ þ ~FaðtÞ: ð23Þ

338339Depending on the angles Θ and i, the pulse shape from the
340pulsar can be classified into four cases, where the boundary
341between different cases is determined by ψ cri [13,31].
342That is, in the Θ=π − i=π plane for 0 ≤ i=π ≤ 0.5 and
3430 ≤ Θ=π ≤ 0.5, (i) only the primary spot can be observed at
344any time, where iþ Θ < π − ψ cri, (ii) the primary spot can
345be observed at any time and the antipodal spot can also be
346observed sometimes, where π − ψ cri < iþ Θ < ψ cri and
347ψ cri − π < i − Θ < π − ψcri, (iii) only the primary spot can
348be observed, or both spots can be observed, or only the
349antipodal spot can be observed, where iþ Θ > ψ cri, and
350(iv) the both spots can be observed at any time, where
351i − Θ < ψ cri − π or i − Θ > π − ψ cri. In Fig. 4, we show
352such a classification for the stellar models constructed with
353FPS EOS with 1.6 M⊙ in the left panel and for those
354constructed with Shen EOS with 2.1 M⊙ in the right panel,
355where the solid line denotes the result in general relativity
356while the dotted and dashed lines denote those in scalar-
357tensor gravity with β ¼ −4.6 and −5.0. Since ψ cri depends
358on the gravitational theory even for fixing the stellar mass
359(as shown in Fig. 3), the boundary of the classification in
360the Θ=π − i=π plane also depends on the gravitational
361theory.
362In Fig. 5, we plot the pulse profiles from the neutron star
363for FPS EOS with MADM ¼ 1.6 M⊙ in general relativity
364(upper row), in scalar-tensor gravity with β ¼ −4.6 (middle
365row), and with β ¼ −5.0 (lower row) for various values of
366ðΘ=π; i=πÞ, which correspond to the dots in the left panel of

F4:1 FIG. 4. The boundaries, which classify the observations of two hot spots, are shown with the solid line in general relativity, and with
F4:2 the dotted and dashed lines in scalar-tensor gravity with β ¼ −4.6 and −5.0. The left and right panels correspond to the stellar models
F4:3 with 1.6 M⊙ for FPS EOS and with 2.1 M⊙ for Shen EOS, respectively. For each case, the boundary is determined by connecting
F4:4 ðΘ=π; i=πÞ ¼ ð0; 1 − ψ cri=πÞ, ð1 − ψ cri=π; 0Þ, ð0.5;ψcri=π − 0.5Þ, and ðψcri=π − 0.5; 0.5Þ with ψcri determined for each stellar model.
F4:5 The filled circles in the figure denote the specific values of ðΘ=π; i=πÞ, which are adopted for considering the pulse profiles.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as
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As in [13,16], adopting the pointlike-spot approximation
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in the area of dS, and integrating dF in the ranges of
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Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by
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a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.
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maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed
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circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
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region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
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with several realistic EOSs, where the observed maximum
mass of PSR J0348þ 0432 (horizontal thick-solid line) and
the constraint on the 1.4 M⊙ neutron-star radius (horizontal
solid line) are also shown. We remark that FPS and SLy
EOSs are based on the Skyrme-type effective interactions
[21,22], Shen EOS is based on the relativistic mean fled
theory [23], and APR EOS is with variational method [24].
From this figure, FPS is ruled out from the 2 M⊙ neutron-
star observations, while Shen is ruled out from the radius
constraint with GW170817. In addition to the observational
constraints, the causality gives us theoretical constraint, i.e.,
R < 2.824M [25], which is shown by the top-left painted
region.
For considering the pulse profile from a rotating neutron

star, the stellar compactness is the most important param-
eter. In fact, under the assumption that the spin frequency is
not so high, the pulse profile from a neutron star is the same
as that from another neutron star with the same compact-
ness, even if the mass and radius are different from each
other [13,16]. Moreover, as mentioned in the previous
section, since we focus on the neutron-star models for
which ψ cri > π, in Fig. 3 we plot the solid-straight lines
corresponding to the stellar models with ψ cri ¼ π, 3π=2,
and 2π from bottom to top, i.e., M=R ¼ 0.2840, 0.3236,
and 0.3313 from bottom to top. From this figure, one sees
that ψ cri < π holds for most neutron-star models. However,
one can see also that the stellar models with ψ cri > π are
still allowed although such a region is limited in the mass-
radius plane.
In order to examine the pulse profiles for the neutron-

star models whose values of ψ cri are in the range of π <
ψ cri < 3π=2 and 3π=2 < ψ cri < 2π, in this study we
particularly adopt two neutron-star models with ðM;RÞ ¼
ð2.0 M⊙; 10 kmÞ and ð2.21 M⊙; 10 kmÞ, which are shown
in Fig. 3 with the plus and cross symbols, respectively.
Additionally, for reference we consider the neutron-star
model with ðM;RÞ ¼ ð1.8 M⊙; 10 kmÞ in the Appendix,
which is also marked with the circle in Fig. 3. In fact, since
the pulse profile depends on only the stellar compactness,
the stellar models marked with the plus and circle can be
constructed with SLy or APR EOSs with different mass and
radius, while the stellar model marked with the cross seems
to correspond to the stellar model with the maximum mass
constructed with APR EOS with different mass and radius.

IV. CLASSIFICATION OF PULSE PROFILES

As in Refs. [13,16], we consider a rotating neutron star
with two antipodal hot spots associated with the magnetic
polar caps. As shown in Fig. 4, we call the hot spot closer to
the observer a primary one and the other an antipodal one.
The unit vector pointing the observer is denoted by d, while
the unit normal vectors on the primary and antipodal hot
spots are respectively denoted by n and n̄. The angle
between d and the rotational axis is denoted by i, while the
angle between n and the rotational axis is byΘ. In this case,

the angles i and Θ are in the range of 0 ≤ i ≤ π=2
and 0 ≤ Θ ≤ π=2.
Regarding the angle between n and d as ψ for the pulsar

rotating with angular velocity ω, one obtains the time
dependence of μ ¼ cosψ for given i and Θ as

μðtÞ ¼ sin i sinΘ cosðωtÞ þ cos i cosΘ; ð10Þ

where we set t ¼ 0 when the primary hot spot is closest to
the observer, i.e., when μ has a maximum value. We note
that, at any given point in time, one can suppose the
existence of a plane spanned by two vectors d and n (or n̄),
in which the stellar center exists, and that the observer
detects the photon from the hot spot whose trajectory is on
such a plane.
From Fig. 4, the minimum and maximum values of μ are

determined by

μmin ¼ cosψmax ¼ cosðiþ ΘÞ; ð11Þ

μmax ¼ cosψmin ¼ cos ji − Θj; ð12Þ

where ψmax and ψmin respectively denote the angles
between d and n when the primary hot spot is closest to
and farthest from the observer. On the other hand, the value
of μ̄, which is for the antipodal hot spot, is given by μ̄ ¼ −μ
since n̄ ¼ −n. Thus, the minimum and maximum values of
μ̄ are given by

μ̄min ¼ −μmax ¼ − cos ji − Θj; ð13Þ

μ̄max ¼ −μmin ¼ − cosðiþ ΘÞ: ð14Þ

Note that μmax > 0 and μ̄min < 0 by definition.

FIG. 4. Schematic picture of the hot spots on the pulsar rotating
with angular velocity ω. d is the unit vector pointing to the
observer, while n and n̄ are respectively the normal unit vectors
on the primary and antipodal hot spots. Θ is the angle between the
rotational axis and n, while i is the angle between the rotational
axis and d. Angles i and Θ are in the range of 0 ≤ i ≤ π=2
and 0 ≤ Θ ≤ π=2.

HAJIME SOTANI and UMPEI MIYAMOTO PHYS. REV. D 98, 044017 (2018)

044017-4
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model with ðM;RÞ ¼ ð1.8 M⊙; 10 kmÞ in the Appendix,
which is also marked with the circle in Fig. 3. In fact, since
the pulse profile depends on only the stellar compactness,
the stellar models marked with the plus and circle can be
constructed with SLy or APR EOSs with different mass and
radius, while the stellar model marked with the cross seems
to correspond to the stellar model with the maximum mass
constructed with APR EOS with different mass and radius.
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The unit vector pointing the observer is denoted by d, while
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spots are respectively denoted by n and n̄. The angle
between d and the rotational axis is denoted by i, while the
angle between n and the rotational axis is byΘ. In this case,
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Regarding the angle between n and d as ψ for the pulsar

rotating with angular velocity ω, one obtains the time
dependence of μ ¼ cosψ for given i and Θ as

μðtÞ ¼ sin i sinΘ cosðωtÞ þ cos i cosΘ; ð10Þ

where we set t ¼ 0 when the primary hot spot is closest to
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that, at any given point in time, one can suppose the
existence of a plane spanned by two vectors d and n (or n̄),
in which the stellar center exists, and that the observer
detects the photon from the hot spot whose trajectory is on
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From Fig. 4, the minimum and maximum values of μ are
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where ψmax and ψmin respectively denote the angles
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μ̄ are given by
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
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models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
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region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
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303 angle between the rotational and the magnetic axes, and i,
304 which is the angle between the rotational axis and the
305 direction to the observer, where Θ and i can be chosen in
306 such a way that i ≤ π=2 and Θ ≤ π=2 (see Fig. 3 in
307 Ref. [13]). Then, the value of μ ¼ cosψ for the primary
308 hot spot is varying with time as

μðtÞ ¼ sin i sinΘ cosðΩtÞ þ cos i cosΘ; ð22Þ

309310 because the value of μ is determined via μ ¼ np · d with the
311 normal vector at the primary hot spot (np) and the unit
312 vector pointing toward the observer (d) [13,31], where we
313 put t ¼ 0 when the primary hot spot comes to the closest
314 point to the observer, i.e., ψ becomes minimum. With
315 respect to the antipodal hot spot, due to the symmetry of the
316 system, the normal vector at the antipodal hot spot (na) is
317 given by na ¼ −np. Thus, the value of μ for the antipodal
318 hot spot (μ̄) is determined by μ̄ðtÞ ¼ na · d ¼ −μðtÞ as a
319 function of time. Here, for simplicity we assume that Ω is
320 small enough to neglect the frame dragging effect due to the
321 stellar rotation. In fact, the frame dragging effect could be
322 neglected for 1=T ≲ a few hundred Hz [12], where T
323 denotes the rotational period, i.e., T ¼ 2π=Ω. Then, the
324 pulse profile with the given angles Θ and i becomes
325 periodic, where the amplitude at t=T for 0.5 ≤ t=T ≤ 1
326 becomes the same as that at 1 − t=T. So, the figures for the
327 pulse profile from each stellar model as shown below are
328 plotted in the period of 0 ≤ t=T ≤ 0.5. In addition, from
329 Eq. (22), one can see that the pulse profile with ðΘ; iÞ ¼
330 ðθ1; θ2Þ is equivalent to that with ðΘ; iÞ ¼ ðθ2; θ1Þ for 0 ≤
331 θi ≤ π=2 with i ¼ 1 and 2.
332 The primary (antipodal) hot spot can be seen when μðμ̄Þ
333 is larger than cosψ cri. Thus, the flux from the primary
334 (antipodal) hot spot, ~F ( ~Fa), is calculated via Eq. (21) for

335μðμ̄Þ ≥ cosψ cri and becomes 0 for μðμ̄Þ ≤ cosψ cri. With
336~FðtÞ and ~FaðtÞ, the observed flux from the pulsar is
337determined as

FobðtÞ ¼ ~FðtÞ þ ~FaðtÞ: ð23Þ

338339Depending on the angles Θ and i, the pulse shape from the
340pulsar can be classified into four cases, where the boundary
341between different cases is determined by ψ cri [13,31].
342That is, in the Θ=π − i=π plane for 0 ≤ i=π ≤ 0.5 and
3430 ≤ Θ=π ≤ 0.5, (i) only the primary spot can be observed at
344any time, where iþ Θ < π − ψ cri, (ii) the primary spot can
345be observed at any time and the antipodal spot can also be
346observed sometimes, where π − ψ cri < iþ Θ < ψ cri and
347ψ cri − π < i − Θ < π − ψcri, (iii) only the primary spot can
348be observed, or both spots can be observed, or only the
349antipodal spot can be observed, where iþ Θ > ψ cri, and
350(iv) the both spots can be observed at any time, where
351i − Θ < ψ cri − π or i − Θ > π − ψ cri. In Fig. 4, we show
352such a classification for the stellar models constructed with
353FPS EOS with 1.6 M⊙ in the left panel and for those
354constructed with Shen EOS with 2.1 M⊙ in the right panel,
355where the solid line denotes the result in general relativity
356while the dotted and dashed lines denote those in scalar-
357tensor gravity with β ¼ −4.6 and −5.0. Since ψ cri depends
358on the gravitational theory even for fixing the stellar mass
359(as shown in Fig. 3), the boundary of the classification in
360the Θ=π − i=π plane also depends on the gravitational
361theory.
362In Fig. 5, we plot the pulse profiles from the neutron star
363for FPS EOS with MADM ¼ 1.6 M⊙ in general relativity
364(upper row), in scalar-tensor gravity with β ¼ −4.6 (middle
365row), and with β ¼ −5.0 (lower row) for various values of
366ðΘ=π; i=πÞ, which correspond to the dots in the left panel of

F4:1 FIG. 4. The boundaries, which classify the observations of two hot spots, are shown with the solid line in general relativity, and with
F4:2 the dotted and dashed lines in scalar-tensor gravity with β ¼ −4.6 and −5.0. The left and right panels correspond to the stellar models
F4:3 with 1.6 M⊙ for FPS EOS and with 2.1 M⊙ for Shen EOS, respectively. For each case, the boundary is determined by connecting
F4:4 ðΘ=π; i=πÞ ¼ ð0; 1 − ψ cri=πÞ, ð1 − ψ cri=π; 0Þ, ð0.5;ψcri=π − 0.5Þ, and ðψcri=π − 0.5; 0.5Þ with ψcri determined for each stellar model.
F4:5 The filled circles in the figure denote the specific values of ðΘ=π; i=πÞ, which are adopted for considering the pulse profiles.
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how to observe the hot spots:1.8M⊙ 
•  depending on the angles Θ & I 

I) only the primary spot can be observed at any time 
II) the primary spot can be observed at any time  
   and the antipodal spot can also be observed sometime 
III) only the primary spot can be observed,  
   or both spots can be observed, 
   or only the antipodal spot can  
      be observed 
IV) the both stops can be observed 
    at any time 
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ratio of the maximum observed flux to the minimum one is
significantly large compared to the case forM=R ≤ 0.2840.
In particular, such a ratio becomes larger as the stellar
compactness increases, and one can see a significant
difference between the cases ofM=R ≥ 0.2840 andM=R ≤
0.2840 in the situation of ji − Θj ∼ 0. Thus, the results in
this paper suggests that one would be able to constrain the
equation of state for neutron stars through the observation
of pulse profile, provided angles i and Θ are determined by
other methods. Furthermore, if a phase transition from
hadronic matter to quark matter might exist inside a star, the
star likely becomes more compact [26], which may lead to
stronger brightening in the pulse profiles. That is, one may
be also able to obtain the imprint of the phase transition
inside the star by carefully observing the pulse profile.
For simplicity, in this paper we have included the effect

of rotation only partially. In fact, as the spin increases up to
∼ a few hundred Hz, one will have to take into account the
Doppler effect, relativistic aberration [27,28], frame drag-
ging, and the stellar deformation [29,30]. In addition, for
realistic situations, the existence of magnetosphere should
be taken into account. Such a situation will be discussed
elsewhere.
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APPENDIX: PULSE PROFILES FOR ψcri < π

For reference, we present the pulse profiles for ψ cri < π.
As mentioned in the text, this situation might be the most
likely for ordinary neutron stars, in which the invisible zone
exists and its size depends on the stellar compactness. That
is, the number of photon paths from the primary and
antipodal hot spots is just one. In this situation, whether the
primary and antipodal hot spots can be seen is classified
into the following four cases, depending on i andΘ [13,16]:

(I) Only the primary hot spot is observed at any
moment.

(II) The primary hot spot is observed at any moment,
while the antipodal hot spot is observed sometime.

(III) The primary hot spot is not observed sometime.
(IV) Both hot spots are observed at any moment.
This classification is depicted in Fig. 15, where the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km is adopted.
In order to compare with the case of ψ cri > π in the text, we
consider the neutron-star models with the specific angles of
i and Θ shown in Fig. 15.
We present the combinations of angles i and Θ in Fig. 16

together with the boundary of classification of pulse
profiles, which is the same as in Fig. 8. The pulse profiles

forM=R ¼ 0.2658 are calculated for these combinations of
angles. The obtained pulse profiles are shown in Fig. 17,
and the magnified figures of the observed flux is shown in
Fig. 18. Unlike the case of ψ cri > π discussed in the text,
the time at which the observed flux has a maximum
depends on the class of pulse profiles, i.e., the combination
of i and Θ. Additionally, one can see that the flux from the
primary (resp. antipodal) hot spot monotonically decreases
(rest. increases) during 0 ≤ t=T ≤ 0.5 as expected from
Fig. 7, which is a different behavior from that in the case of
ψcri > π. Furthermore, the ratio of Fmax to Fmin is presented
in Fig. 19 as a function on ðΘ − iÞ=π. Again, the behavior
for ψ cri < π is different from that for ψ cir > π. Namely, the
ratio depends on the class of pulse profiles, and one cannot
say that the ratio increases as jΘ − ij=π decreases. In
addition, one can observe that the ratio for ψ cri < π is
significantly smaller than that for ψ cir > π.

FIG. 15. The plane of i and Θ is classified depending on
whether the primary and antipodal hot spots can be observed or
not for the neutron-star model with M ¼ 1.8 M⊙ and
R ¼ 10 km, for which ψ cri ¼ 0.908π (i.e., ψ cri < π) [16]. The
regions denoted by I, II, III, and IV correspond to the cases
explained in the text.

FIG. 16. Specific angles of i and Θ, with which the pulse
profiles are computed, and the classification of the plane for the
stellar models with M=R ¼ 0.2658.
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with several realistic EOSs, where the observed maximum
mass of PSR J0348þ 0432 (horizontal thick-solid line) and
the constraint on the 1.4 M⊙ neutron-star radius (horizontal
solid line) are also shown. We remark that FPS and SLy
EOSs are based on the Skyrme-type effective interactions
[21,22], Shen EOS is based on the relativistic mean fled
theory [23], and APR EOS is with variational method [24].
From this figure, FPS is ruled out from the 2 M⊙ neutron-
star observations, while Shen is ruled out from the radius
constraint with GW170817. In addition to the observational
constraints, the causality gives us theoretical constraint, i.e.,
R < 2.824M [25], which is shown by the top-left painted
region.
For considering the pulse profile from a rotating neutron

star, the stellar compactness is the most important param-
eter. In fact, under the assumption that the spin frequency is
not so high, the pulse profile from a neutron star is the same
as that from another neutron star with the same compact-
ness, even if the mass and radius are different from each
other [13,16]. Moreover, as mentioned in the previous
section, since we focus on the neutron-star models for
which ψ cri > π, in Fig. 3 we plot the solid-straight lines
corresponding to the stellar models with ψ cri ¼ π, 3π=2,
and 2π from bottom to top, i.e., M=R ¼ 0.2840, 0.3236,
and 0.3313 from bottom to top. From this figure, one sees
that ψ cri < π holds for most neutron-star models. However,
one can see also that the stellar models with ψ cri > π are
still allowed although such a region is limited in the mass-
radius plane.
In order to examine the pulse profiles for the neutron-

star models whose values of ψ cri are in the range of π <
ψ cri < 3π=2 and 3π=2 < ψ cri < 2π, in this study we
particularly adopt two neutron-star models with ðM;RÞ ¼
ð2.0 M⊙; 10 kmÞ and ð2.21 M⊙; 10 kmÞ, which are shown
in Fig. 3 with the plus and cross symbols, respectively.
Additionally, for reference we consider the neutron-star
model with ðM;RÞ ¼ ð1.8 M⊙; 10 kmÞ in the Appendix,
which is also marked with the circle in Fig. 3. In fact, since
the pulse profile depends on only the stellar compactness,
the stellar models marked with the plus and circle can be
constructed with SLy or APR EOSs with different mass and
radius, while the stellar model marked with the cross seems
to correspond to the stellar model with the maximum mass
constructed with APR EOS with different mass and radius.

IV. CLASSIFICATION OF PULSE PROFILES

As in Refs. [13,16], we consider a rotating neutron star
with two antipodal hot spots associated with the magnetic
polar caps. As shown in Fig. 4, we call the hot spot closer to
the observer a primary one and the other an antipodal one.
The unit vector pointing the observer is denoted by d, while
the unit normal vectors on the primary and antipodal hot
spots are respectively denoted by n and n̄. The angle
between d and the rotational axis is denoted by i, while the
angle between n and the rotational axis is byΘ. In this case,

the angles i and Θ are in the range of 0 ≤ i ≤ π=2
and 0 ≤ Θ ≤ π=2.
Regarding the angle between n and d as ψ for the pulsar

rotating with angular velocity ω, one obtains the time
dependence of μ ¼ cosψ for given i and Θ as

μðtÞ ¼ sin i sinΘ cosðωtÞ þ cos i cosΘ; ð10Þ

where we set t ¼ 0 when the primary hot spot is closest to
the observer, i.e., when μ has a maximum value. We note
that, at any given point in time, one can suppose the
existence of a plane spanned by two vectors d and n (or n̄),
in which the stellar center exists, and that the observer
detects the photon from the hot spot whose trajectory is on
such a plane.
From Fig. 4, the minimum and maximum values of μ are

determined by

μmin ¼ cosψmax ¼ cosðiþ ΘÞ; ð11Þ

μmax ¼ cosψmin ¼ cos ji − Θj; ð12Þ

where ψmax and ψmin respectively denote the angles
between d and n when the primary hot spot is closest to
and farthest from the observer. On the other hand, the value
of μ̄, which is for the antipodal hot spot, is given by μ̄ ¼ −μ
since n̄ ¼ −n. Thus, the minimum and maximum values of
μ̄ are given by

μ̄min ¼ −μmax ¼ − cos ji − Θj; ð13Þ

μ̄max ¼ −μmin ¼ − cosðiþ ΘÞ: ð14Þ

Note that μmax > 0 and μ̄min < 0 by definition.

FIG. 4. Schematic picture of the hot spots on the pulsar rotating
with angular velocity ω. d is the unit vector pointing to the
observer, while n and n̄ are respectively the normal unit vectors
on the primary and antipodal hot spots. Θ is the angle between the
rotational axis and n, while i is the angle between the rotational
axis and d. Angles i and Θ are in the range of 0 ≤ i ≤ π=2
and 0 ≤ Θ ≤ π=2.
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how to observe the hot spots: 2.0M⊙ 
•  depending on the angles Θ & I 

i) the primary has always 1 path, the antipodal has always 2 paths 
ii) the primary has always 1 path, the antipodal has sometime 2 paths 
iii) the both have sometime 2 paths  
iv) the both hot spots have always 1 path 
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As mentioned before, we consider the case of ψ cri > π.
Therefore, the observer can always see the both hot spots.
The number of photon paths, however, can be multiple,
depending on i and Θ. For example, considering the stellar
model with π < ψ cri < 3π=2, the primary hot spot has only
one clockwise photon path in Fig. 4 if μmin > cosψ cri,
while that spot has two photon paths, which are in
the clockwise and counterclockwise directions, if
μmin < cosψ cri. That is, the photon trajectory from the
primary hot spot may be not only clockwise but also
counterclockwise, depending on i and Θ. We shall sepa-
rately discuss the cases of π < ψ cri < 3π=2 in Sec. IVA and
3π=2 < ψ cri < 2π in Sec. IV B. In these cases, the number
of photon paths from each hot spot is either one or two. For
reference, the classification for ψ cri < π is presented in
Appendix. Note that the number of photon paths is possible
to be more than two if one considers for ψ cri > 2π, although
the corresponding neutron-star models are extremely lim-
ited. For example, considering the stellar model with
2π < ψ cri < 3π, in addition to the photon paths in the
clockwise and counterclockwise directions as mentioned
the above, the photon path can exist where the photon
reaches the observer in the clockwise path after making a
circuit around the star. That is, in this case the photon
paths can be maximally three. In a similar way, the
maximum number of photon paths is j ∈ N in the case
of ðj − 1Þπ < ψ cri < jπ.

A. Case of π < ψcri < 3π=2

Since μmax > 0, μmax is always larger than cosψ cri.
Therefore, regarding the number of photon paths from
the primary hot spot, one can consider the following
two cases.

p1: μmin > cosψ cri, where the primary hot spot always
has only one photon path.

p2: μmin < cosψ cri, where the primary hot spot sometime
has two photon paths.

On the other hand, regarding the number of photon paths
from the antipodal hot spot, the following three cases are
possible.

a1: μ̄max < cosψ cri, where the antipodal hot spot always
has two photon paths.

a2: μ̄min > cosψ cri, where the antipodal hot spot always
has only one photon path.

a3: μ̄min < cosψ cri < μ̄max, where the antipodal hot spot
sometime has two photon paths.

Since the observed flux from a rotating neutron star is the
superposition of flux radiated from both hot spots, there are
the following four cases,

(i) Combination of p1 and a1.
(ii) Combination of p1 and a3.
(iii) Combination of p2 and a3.
(iv) Combination of p1 and a2.

One can write down the condition corresponding to the
each case in terms of i and Θ. The division of ði;ΘÞ plane

according to the above classification is presented in
Fig. 5 for the neutron-star model with M ¼ 2.0 M⊙ and
R ¼ 10 km.

B. Case of 3π=2 < ψcri < 2π

In this case, regarding the photon paths from the primary
hot spot, there are following three cases.

p1: μmin > cosψ cri, where the primary hot spot always
has only one photon path.

p2: μmax < cosψ cri, where the primary hot spot always
has two photon paths.

p3: μmin < cosψ cri < μmax, where the primary hot spot
sometime has two photon paths.

On the other hand, because μ̄min < 0 (i.e., μ̄min is always
smaller than cosψ cri), regarding the number of photon
paths from the antipodal hot spot, there are following
two cases.

a1: μ̄max < cosψ cri, where the antipodal hot spot always
has two photon paths.

a2: μ̄max > cosψ cri, where the antipodal hot spot some-
time has two photon paths.

Taking into account all the above classification, there are
four cases regarding the number of photon paths reaching
the observer as Fig. 6, which is drawn for the neutron-star
model with M ¼ 2.21 M⊙ and R ¼ 10 km. The regions
denoted by i, ii, iii, and iv correspond to the followings.

(i) Combination of p1 and a1.
(ii) Combination of p3 and a1.
(iii) Combination of p3 and a2.
(iv) Combination of p2 and a1.

V. PULSE PROFILES

At any given point in time, ψðtÞ, which represents the
position of primary hot spot, is determined by Eq. (10) for
given angles i andΘ. Using such a value of ψ , the flux from

FIG. 5. For π < ψcri < 3π=2, the classification of the number of
photon paths from the primary and antipodal hot spots is shown
in the plane of angles i and Θ for the neutron-star model with
M ¼ 2.0 M⊙ and R ¼ 10 km (the plus symbol in Fig. 3), for
which ψcri ¼ 1.078π.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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with several realistic EOSs, where the observed maximum
mass of PSR J0348þ 0432 (horizontal thick-solid line) and
the constraint on the 1.4 M⊙ neutron-star radius (horizontal
solid line) are also shown. We remark that FPS and SLy
EOSs are based on the Skyrme-type effective interactions
[21,22], Shen EOS is based on the relativistic mean fled
theory [23], and APR EOS is with variational method [24].
From this figure, FPS is ruled out from the 2 M⊙ neutron-
star observations, while Shen is ruled out from the radius
constraint with GW170817. In addition to the observational
constraints, the causality gives us theoretical constraint, i.e.,
R < 2.824M [25], which is shown by the top-left painted
region.
For considering the pulse profile from a rotating neutron

star, the stellar compactness is the most important param-
eter. In fact, under the assumption that the spin frequency is
not so high, the pulse profile from a neutron star is the same
as that from another neutron star with the same compact-
ness, even if the mass and radius are different from each
other [13,16]. Moreover, as mentioned in the previous
section, since we focus on the neutron-star models for
which ψ cri > π, in Fig. 3 we plot the solid-straight lines
corresponding to the stellar models with ψ cri ¼ π, 3π=2,
and 2π from bottom to top, i.e., M=R ¼ 0.2840, 0.3236,
and 0.3313 from bottom to top. From this figure, one sees
that ψ cri < π holds for most neutron-star models. However,
one can see also that the stellar models with ψ cri > π are
still allowed although such a region is limited in the mass-
radius plane.
In order to examine the pulse profiles for the neutron-

star models whose values of ψ cri are in the range of π <
ψ cri < 3π=2 and 3π=2 < ψ cri < 2π, in this study we
particularly adopt two neutron-star models with ðM;RÞ ¼
ð2.0 M⊙; 10 kmÞ and ð2.21 M⊙; 10 kmÞ, which are shown
in Fig. 3 with the plus and cross symbols, respectively.
Additionally, for reference we consider the neutron-star
model with ðM;RÞ ¼ ð1.8 M⊙; 10 kmÞ in the Appendix,
which is also marked with the circle in Fig. 3. In fact, since
the pulse profile depends on only the stellar compactness,
the stellar models marked with the plus and circle can be
constructed with SLy or APR EOSs with different mass and
radius, while the stellar model marked with the cross seems
to correspond to the stellar model with the maximum mass
constructed with APR EOS with different mass and radius.

IV. CLASSIFICATION OF PULSE PROFILES

As in Refs. [13,16], we consider a rotating neutron star
with two antipodal hot spots associated with the magnetic
polar caps. As shown in Fig. 4, we call the hot spot closer to
the observer a primary one and the other an antipodal one.
The unit vector pointing the observer is denoted by d, while
the unit normal vectors on the primary and antipodal hot
spots are respectively denoted by n and n̄. The angle
between d and the rotational axis is denoted by i, while the
angle between n and the rotational axis is byΘ. In this case,

the angles i and Θ are in the range of 0 ≤ i ≤ π=2
and 0 ≤ Θ ≤ π=2.
Regarding the angle between n and d as ψ for the pulsar

rotating with angular velocity ω, one obtains the time
dependence of μ ¼ cosψ for given i and Θ as

μðtÞ ¼ sin i sinΘ cosðωtÞ þ cos i cosΘ; ð10Þ

where we set t ¼ 0 when the primary hot spot is closest to
the observer, i.e., when μ has a maximum value. We note
that, at any given point in time, one can suppose the
existence of a plane spanned by two vectors d and n (or n̄),
in which the stellar center exists, and that the observer
detects the photon from the hot spot whose trajectory is on
such a plane.
From Fig. 4, the minimum and maximum values of μ are

determined by

μmin ¼ cosψmax ¼ cosðiþ ΘÞ; ð11Þ

μmax ¼ cosψmin ¼ cos ji − Θj; ð12Þ

where ψmax and ψmin respectively denote the angles
between d and n when the primary hot spot is closest to
and farthest from the observer. On the other hand, the value
of μ̄, which is for the antipodal hot spot, is given by μ̄ ¼ −μ
since n̄ ¼ −n. Thus, the minimum and maximum values of
μ̄ are given by

μ̄min ¼ −μmax ¼ − cos ji − Θj; ð13Þ

μ̄max ¼ −μmin ¼ − cosðiþ ΘÞ: ð14Þ

Note that μmax > 0 and μ̄min < 0 by definition.

FIG. 4. Schematic picture of the hot spots on the pulsar rotating
with angular velocity ω. d is the unit vector pointing to the
observer, while n and n̄ are respectively the normal unit vectors
on the primary and antipodal hot spots. Θ is the angle between the
rotational axis and n, while i is the angle between the rotational
axis and d. Angles i and Θ are in the range of 0 ≤ i ≤ π=2
and 0 ≤ Θ ≤ π=2.
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how to observe the hot spots: 2.21M⊙ 
•  depending on the angles Θ & I 

i) the primary has always 1 path, the antipodal has always 2 paths 
ii) the primary has sometime 2 paths, the antipodal has always 2 path 
iii) the both have sometime 2 paths  
iv) the both hot spots have always 2 paths 
   

Feb. 18-20/2019 ～中性子星の観測と理論～研究活性化ワークショップ 2019@京都大学 7 

the primary hot spot is calculated with Eq. (9), while that
from the antipodal hot spot F̄ is with Eq. (9) by replacing ψ
by ψ þ π. Then, the observed flux Fob is determined by
Fob ¼ F þ F̄. In order to see the pulse profiles from the
rotating neutron star, we adopt two neutron-star models
with ðM;RÞ ¼ ð2.0 M⊙; 10 kmÞ and ð2.21 M⊙; 10 kmÞ,
which are shown in Fig. 3 with the plus and cross symbols,
respectively. In order to compare these results with the case
of ψ cri < π, we also consider the neutron-star model with
M ¼ 1.8 M⊙ and R ¼ 10 km (the circle in Fig. 3) in
Appendix.
Since F1 in Eq. (9) is independent of time, the pulse

profile is determined by F=F1, as μðtÞ varies with time. So,
before showing the pulse profiles for specific values of i
and Θ, we examine the behavior of F=F1. In Fig. 7, F%=F0

and F=F1 are plotted as functions of ψ=π for the neutron-
star models with M ¼ 1.8 M⊙ by dotted line, 2.0 M⊙ by
solid line, and 2.21 M⊙ by dashed line, fixing the radius
to R ¼ 10 km.
From Fig. 7, one can see that the flux F%=F0 smoothly

changes as ψ increases for any stellar models. On the other
hand, for π < ψ cri < 2π, the dependence of F=F1 on ψ is
obviously different from that for ψ cri < π, i.e., as ψ

increases, F=F1 decreases first but then begins increasing
before ψ ¼ π. If the hot spot comes close to ψ ∼ π, i.e.,
ji − Θj ∼ 0, the flux from such a hot spot becomes
important for pulse profiles. This brightening around
ψ ¼ π seems to be the result of that we consider the flux
from the hot spot whose area is fixed. In other words, in
order to keep the spot area, the value of δψδϕ in Eq. (8)
depends on the position of the spot. Then, if the spot would
approach the position of ψ ∼ π, the value of δψδϕ
increases. In fact, the photon path we consider here is
confined on the plane spanned by n and d in Fig. 4, while if
the spot comes to the position of ψ ¼ π, which cannot be
treated in our formalism, the number of the photon paths
becomes infinity because one cannot choose a specific
plane. Anyway, we note that the behavior in the vicinity of
ψ ¼ π may be modified and one could remove the
singularity at ψ ¼ π if the pointlike-spot approximation
is not applied. In addition, we find that F=F1 is quite small
for ψ > π compared to that for ψ < π. That is, if the angle
ψ is larger than π, the flux from such a hot spot does not
contribute significantly to the pulse profile.
Here, let us give a few comments on the behavior of

F=F1. First, although the flux for ψ cri > π seems to diverge
at ψ=π ¼ 1, it should not be taken as it is. Namely, as
mentioned at the end of Sec. II, the flux exactly from the
coordinate poles (ψ ¼ 0 and π) cannot be dealt appropri-
ately in the present framework, relying on the point-like
approximation of hot spot. Second, it can be analytically
proven that F=F1 vanishes at ψ ¼ ψ cri by expanding
Eq. (9) around ψ cri and substituting αðψ criÞ ¼ π=2.
Now, we consider the pulse profiles from a rotating

neutron star with specific values of i and Θ. The pulse
profile with ði;ΘÞ ¼ ða; bÞ is the same as that with ði;ΘÞ ¼
ðb; aÞ since Eq. (10) is symmetric with respect to i and Θ.
Therefore, we consider the case of Θ > i in this paper. In
particular, we calculate the pulse profiles for the 16
combinations of i and Θ shown in Fig. 8, i.e., Θ=π ¼
0.04, 0.15, 0.25, 0.35, and 0.45 for i=π ¼ 0.02;
Θ=π ¼ 0.15, 0.25, 0.35, and 0.45 for i=π ¼ 0.1;
Θ=π ¼ 0.25, 0.35, and 0.45 for i=π ¼ 0.2; Θ=π ¼ 0.35
and 0.45 for i=π ¼ 0.3; ði=π;Θ=πÞ ¼ ð0.4; 0.45Þ and
(0.46,0.48). These combinations are shown in Fig. 8, where

FIG. 6. For π < ψcri < 3π=2, the classification of the number of
photon paths from the primary and antipodal hot spots is depicted
in the plane of angles i and Θ for the neutron-star model with
M ¼ 2.21 M⊙ and R ¼ 10 km (the cross symbol in Fig. 3),
where ψcri ¼ 1.604π.

FIG. 7. F%=F0 given by Eq. (8) and F=F1 given by Eq. (9) are shown as a function of ψ=π for the neutron star models with
M ¼ 1.8 M⊙ (dotted line), 2.0 M⊙ (solid line), and 2.21 M⊙ (dashed line), where the radius is fixed to be 10 km.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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the primary hot spot is calculated with Eq. (9), while that
from the antipodal hot spot F̄ is with Eq. (9) by replacing ψ
by ψ þ π. Then, the observed flux Fob is determined by
Fob ¼ F þ F̄. In order to see the pulse profiles from the
rotating neutron star, we adopt two neutron-star models
with ðM;RÞ ¼ ð2.0 M⊙; 10 kmÞ and ð2.21 M⊙; 10 kmÞ,
which are shown in Fig. 3 with the plus and cross symbols,
respectively. In order to compare these results with the case
of ψ cri < π, we also consider the neutron-star model with
M ¼ 1.8 M⊙ and R ¼ 10 km (the circle in Fig. 3) in
Appendix.
Since F1 in Eq. (9) is independent of time, the pulse

profile is determined by F=F1, as μðtÞ varies with time. So,
before showing the pulse profiles for specific values of i
and Θ, we examine the behavior of F=F1. In Fig. 7, F%=F0

and F=F1 are plotted as functions of ψ=π for the neutron-
star models with M ¼ 1.8 M⊙ by dotted line, 2.0 M⊙ by
solid line, and 2.21 M⊙ by dashed line, fixing the radius
to R ¼ 10 km.
From Fig. 7, one can see that the flux F%=F0 smoothly

changes as ψ increases for any stellar models. On the other
hand, for π < ψ cri < 2π, the dependence of F=F1 on ψ is
obviously different from that for ψ cri < π, i.e., as ψ

increases, F=F1 decreases first but then begins increasing
before ψ ¼ π. If the hot spot comes close to ψ ∼ π, i.e.,
ji − Θj ∼ 0, the flux from such a hot spot becomes
important for pulse profiles. This brightening around
ψ ¼ π seems to be the result of that we consider the flux
from the hot spot whose area is fixed. In other words, in
order to keep the spot area, the value of δψδϕ in Eq. (8)
depends on the position of the spot. Then, if the spot would
approach the position of ψ ∼ π, the value of δψδϕ
increases. In fact, the photon path we consider here is
confined on the plane spanned by n and d in Fig. 4, while if
the spot comes to the position of ψ ¼ π, which cannot be
treated in our formalism, the number of the photon paths
becomes infinity because one cannot choose a specific
plane. Anyway, we note that the behavior in the vicinity of
ψ ¼ π may be modified and one could remove the
singularity at ψ ¼ π if the pointlike-spot approximation
is not applied. In addition, we find that F=F1 is quite small
for ψ > π compared to that for ψ < π. That is, if the angle
ψ is larger than π, the flux from such a hot spot does not
contribute significantly to the pulse profile.
Here, let us give a few comments on the behavior of

F=F1. First, although the flux for ψ cri > π seems to diverge
at ψ=π ¼ 1, it should not be taken as it is. Namely, as
mentioned at the end of Sec. II, the flux exactly from the
coordinate poles (ψ ¼ 0 and π) cannot be dealt appropri-
ately in the present framework, relying on the point-like
approximation of hot spot. Second, it can be analytically
proven that F=F1 vanishes at ψ ¼ ψ cri by expanding
Eq. (9) around ψ cri and substituting αðψ criÞ ¼ π=2.
Now, we consider the pulse profiles from a rotating

neutron star with specific values of i and Θ. The pulse
profile with ði;ΘÞ ¼ ða; bÞ is the same as that with ði;ΘÞ ¼
ðb; aÞ since Eq. (10) is symmetric with respect to i and Θ.
Therefore, we consider the case of Θ > i in this paper. In
particular, we calculate the pulse profiles for the 16
combinations of i and Θ shown in Fig. 8, i.e., Θ=π ¼
0.04, 0.15, 0.25, 0.35, and 0.45 for i=π ¼ 0.02;
Θ=π ¼ 0.15, 0.25, 0.35, and 0.45 for i=π ¼ 0.1;
Θ=π ¼ 0.25, 0.35, and 0.45 for i=π ¼ 0.2; Θ=π ¼ 0.35
and 0.45 for i=π ¼ 0.3; ði=π;Θ=πÞ ¼ ð0.4; 0.45Þ and
(0.46,0.48). These combinations are shown in Fig. 8, where

FIG. 6. For π < ψcri < 3π=2, the classification of the number of
photon paths from the primary and antipodal hot spots is depicted
in the plane of angles i and Θ for the neutron-star model with
M ¼ 2.21 M⊙ and R ¼ 10 km (the cross symbol in Fig. 3),
where ψcri ¼ 1.604π.

FIG. 7. F%=F0 given by Eq. (8) and F=F1 given by Eq. (9) are shown as a function of ψ=π for the neutron star models with
M ¼ 1.8 M⊙ (dotted line), 2.0 M⊙ (solid line), and 2.21 M⊙ (dashed line), where the radius is fixed to be 10 km.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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can reach the observer. In this paper, we particularly focus
on the neutron-star models for which ψ cri > π, and examine
the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
D2

; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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the pulse profiles from such neutron stars. In the case of
ψ cri > π, the number of photon paths can be multiple, i.e.,
the photon emitted from the stellar surface can proceeds in
the directions of the decrease and increase of ψ to reach the
distant observer.
The observed flux dF of the photons radiated from the

hot spot whose area is dS is given by

dF ¼ I0ðαÞAðRÞ cos α
dðcos αÞ

dμ
dS
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; ð5Þ

where μ ≔ cosψ , I0 is the surface intensity, and D is the
distance between the observer and the star [13,16]. Setting
ϕ as an azimuthal angle with respect to the direction to the
observer from the stellar center, dS in Eq. (5) becomes
dS ¼ R2 sinψdψdϕ. Then, Eq. (5) can be rewritten as

dF ¼ I0ðαÞAðRÞ sin α cos α
dα
dψ

R2

D2
dψdϕ: ð6Þ

As in [13,16], adopting the pointlike-spot approximation
for simplicity, where the spot area is assumed to be so small
that the variables in Eq. (5) do not depend on the position
in the area of dS, and integrating dF in the ranges of
ψ − δψ ≤ ψ ≤ ψ þ δψ and ϕ − δϕ ≤ ϕ ≤ ϕþ δϕ, one
obtains the observed bolometric flux as

F%ðψÞ≔
Z

dF¼ I0ðαÞ
4AðRÞR2δψδϕ

D2
sinαcosα

dα
dψ

: ð7Þ

Although I0 generally depends on the emission angle α,
hereafter we assume the isotropic emission in a local
Lorentz frame, i.e., I0 ¼ const for simplicity. Then, the
observed flux is given by

F%ðψÞ¼F0 sinαcosα
dα
dψ

; F0 ≔
4I0AðRÞR2δψδϕ

D2
: ð8Þ

We remark that this observed flux comes from the spot
whose area is S0 ≔

R
dS ¼ 4R2δψδϕ sinψ , while the area

of S0 depends on the position ψ . Now, considering the
observed flux from the hot spot on the stellar surface,
whose area is fixed to be s, the observed flux FðψÞ is given
by FðψÞ ¼ F%ðψÞ × s=S0. Finally, the observed flux is
expressed as

FðψÞ ¼ F1 cos α
dðcos αÞ

dμ
; F1 ≔ I0

sAðRÞ
D2

; ð9Þ

which is the same expression in [13,16]. Due to the
coordinate singularity of the polar coordinates at poles
ψ ¼ 0 and π [i.e., the points where dμ ¼ − sinψdψ
appearing in Eq. (9) vanishes], one cannot treat the flux

from the hot spot when it is exactly on either pole by the
present scheme, as long as we rely on the pointlike
approximation of hot spot. Although such a situation
occurs only when i ¼ Θ holds, we do not consider such
a special situation in this paper, where the meaning of the
angles i and Θ is as shown in Fig. 4.

III. ADOPTED NEUTRON-STAR MODELS

Here, let us introduce the neutron-star models adopted in
this study. Up to now, many equations of state (EOSs) for
neutron-star matter have been proposed theoretically, but it
is not fixed yet. This is because the density inside the star
significantly exceeds the nuclear saturation density, while
the constraint on the properties of nuclear matter in such a
high density region is quite difficult by terrestrial nuclear
experiments. Even so, recent astronomical observations set
constraints on the EOS. One of them is the discoveries of
neutron stars with ∼2 M⊙, i.e., PSR J1614-2230 with
M ¼ ð1.97& 0.04ÞM⊙ [3] and PSR J0348þ 0432 with
M ¼ ð2.01& 0.04Þ=M⊙ [4]. Owing to the existence of
such massive neutron stars, the EOS which predicts that the
maximum mass is less than 2 M⊙ is ruled out. Meanwhile,
the observation of gravitational wave from the binary
neutron-star merger [19], GW170817, gives us the con-
straint on the tidal deformability, which leads to another
constraint on the stellar radius, i.e., the maximum radius of
the neutron star with 1.4 M⊙ is 13.6 km [20]. In Fig. 3, for
reference, we plot the mass-radius relations constructed

FIG. 3. Stellar models adopted in this study are shown with the
circle, plus, and cross. The plus symbol denotes the neutron-star
model with M ¼ 2.0 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.078π, i.e., π < ψcri < 3π=2, while the cross symbol
denotes that with M ¼ 2.21 M⊙ and R ¼ 10 km, for which
ψcri ¼ 1.604π, i.e., 3π=2 < ψ cri < 2π. For reference, the neutron-
star model with M ¼ 1.8 M⊙ and R ¼ 10 km, for which
ψcri ¼ 0.908π, i.e., ψcri < π, is also marked with the circle.
For reference, mass and radius relations constructed with several
EOSs are shown. Three slid-straight lines denote the stellar
models with ψ cri ¼ π, 3π=2, and 2π, where M=R ¼ 0.2840,
0.3236, and 0.3313, from bottom to top. The top-left painted
region is forbidden by the causality [25]. In addition, the observed
maximum mass of PSR J0348þ 0432 is shown with the
horizontal thick-solid line and the radius constraint with the
gravitational wave observation (GW170817) is shown by the
horizontal solid line.
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deviation between the light curve with the effect of the spot area and that with pointlike approximation, in the lower panels of
Fig. 6 we show the relative deviation defined as

∆ ≡ |F/Fmax − F (p)/F (p)
max|

F/Fmax
, (16)

the primary hot spot is calculated with Eq. (9), while that
from the antipodal hot spot F̄ is with Eq. (9) by replacing ψ
by ψ þ π. Then, the observed flux Fob is determined by
Fob ¼ F þ F̄. In order to see the pulse profiles from the
rotating neutron star, we adopt two neutron-star models
with ðM;RÞ ¼ ð2.0 M⊙; 10 kmÞ and ð2.21 M⊙; 10 kmÞ,
which are shown in Fig. 3 with the plus and cross symbols,
respectively. In order to compare these results with the case
of ψ cri < π, we also consider the neutron-star model with
M ¼ 1.8 M⊙ and R ¼ 10 km (the circle in Fig. 3) in
Appendix.
Since F1 in Eq. (9) is independent of time, the pulse

profile is determined by F=F1, as μðtÞ varies with time. So,
before showing the pulse profiles for specific values of i
and Θ, we examine the behavior of F=F1. In Fig. 7, F%=F0

and F=F1 are plotted as functions of ψ=π for the neutron-
star models with M ¼ 1.8 M⊙ by dotted line, 2.0 M⊙ by
solid line, and 2.21 M⊙ by dashed line, fixing the radius
to R ¼ 10 km.
From Fig. 7, one can see that the flux F%=F0 smoothly

changes as ψ increases for any stellar models. On the other
hand, for π < ψ cri < 2π, the dependence of F=F1 on ψ is
obviously different from that for ψ cri < π, i.e., as ψ

increases, F=F1 decreases first but then begins increasing
before ψ ¼ π. If the hot spot comes close to ψ ∼ π, i.e.,
ji − Θj ∼ 0, the flux from such a hot spot becomes
important for pulse profiles. This brightening around
ψ ¼ π seems to be the result of that we consider the flux
from the hot spot whose area is fixed. In other words, in
order to keep the spot area, the value of δψδϕ in Eq. (8)
depends on the position of the spot. Then, if the spot would
approach the position of ψ ∼ π, the value of δψδϕ
increases. In fact, the photon path we consider here is
confined on the plane spanned by n and d in Fig. 4, while if
the spot comes to the position of ψ ¼ π, which cannot be
treated in our formalism, the number of the photon paths
becomes infinity because one cannot choose a specific
plane. Anyway, we note that the behavior in the vicinity of
ψ ¼ π may be modified and one could remove the
singularity at ψ ¼ π if the pointlike-spot approximation
is not applied. In addition, we find that F=F1 is quite small
for ψ > π compared to that for ψ < π. That is, if the angle
ψ is larger than π, the flux from such a hot spot does not
contribute significantly to the pulse profile.
Here, let us give a few comments on the behavior of

F=F1. First, although the flux for ψ cri > π seems to diverge
at ψ=π ¼ 1, it should not be taken as it is. Namely, as
mentioned at the end of Sec. II, the flux exactly from the
coordinate poles (ψ ¼ 0 and π) cannot be dealt appropri-
ately in the present framework, relying on the point-like
approximation of hot spot. Second, it can be analytically
proven that F=F1 vanishes at ψ ¼ ψ cri by expanding
Eq. (9) around ψ cri and substituting αðψ criÞ ¼ π=2.
Now, we consider the pulse profiles from a rotating

neutron star with specific values of i and Θ. The pulse
profile with ði;ΘÞ ¼ ða; bÞ is the same as that with ði;ΘÞ ¼
ðb; aÞ since Eq. (10) is symmetric with respect to i and Θ.
Therefore, we consider the case of Θ > i in this paper. In
particular, we calculate the pulse profiles for the 16
combinations of i and Θ shown in Fig. 8, i.e., Θ=π ¼
0.04, 0.15, 0.25, 0.35, and 0.45 for i=π ¼ 0.02;
Θ=π ¼ 0.15, 0.25, 0.35, and 0.45 for i=π ¼ 0.1;
Θ=π ¼ 0.25, 0.35, and 0.45 for i=π ¼ 0.2; Θ=π ¼ 0.35
and 0.45 for i=π ¼ 0.3; ði=π;Θ=πÞ ¼ ð0.4; 0.45Þ and
(0.46,0.48). These combinations are shown in Fig. 8, where

FIG. 6. For π < ψcri < 3π=2, the classification of the number of
photon paths from the primary and antipodal hot spots is depicted
in the plane of angles i and Θ for the neutron-star model with
M ¼ 2.21 M⊙ and R ¼ 10 km (the cross symbol in Fig. 3),
where ψcri ¼ 1.604π.

FIG. 7. F%=F0 given by Eq. (8) and F=F1 given by Eq. (9) are shown as a function of ψ=π for the neutron star models with
M ¼ 1.8 M⊙ (dotted line), 2.0 M⊙ (solid line), and 2.21 M⊙ (dashed line), where the radius is fixed to be 10 km.

HAJIME SOTANI and UMPEI MIYAMOTO PHYS. REV. D 98, 044017 (2018)

044017-6

0 30 60 90 120 150 180
0

0.005

0.010

0.015

0.020

ψ* (degree)

F/
F 1

Δψ = 5⚬6.0M 5.0M

4.0M
3.5M

3.3M

3.1M

spot area is fixed 

(3.39M)	

(3.06M)	



pulse profile from NSs 

 

Feb. 18-20/2019 ～中性子星の観測と理論～研究活性化ワークショップ 2019@京都大学 10 

[1] S. L. Shapiro and S. A. Teukolsky, in Black Holes, White
Dwarfs, and Neutron Stars (Wiley-Interscience, New York,
1983).

[2] E. Berti et al., Classical Quantum Gravity 32, 243001
(2015).

[3] P. B.Demorest, T. Pennucci, S. M. Ransom,M. S. E. Roberts,
and J.W. T. Hessels, Nature (London) 467, 1081 (2010).

[4] J. Antoniadis et al., Science 340, 1233232 (2013).
[5] H. Sotani and K. D. Kokkotas, Phys. Rev. D 70, 084026

(2004); 71, 124038 (2005).

FIG. 17. Pulse profiles for the neutron star model withM ¼ 1.8 M⊙ and ¼ 10 km are shown as a function of t=T for various angles i
and Θ as shown in Fig. 16. The panels from left to right correspond to the angles shown in Fig. 16 with the circles, squares, diamonds,
and triangles. The panels from top to bottom are the observed flux Fob, the flux from the primary hot spot F, and the flux from the
antipodal hot spot F̄, normalized by F1. The labels of I, II, III, and IV denote the class of pulse profiles depending on the angles i and Θ,
which is already explained in text.

FIG. 18. Magnified figure of the observed flux shown in the
top-rightmost panel in Fig. 17. The meaning of lines is the same
as the corresponding panel in Fig. 17.

FIG. 19. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron star model with M=R ¼ 0.2658.
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the left and right panels correspond to the neutron-star
models with M=R ¼ 0.2953 (as an example of
π < ψ cri < 3π=2) and M=R ¼ 0.3263 (as an example of
3π=2 < ψ cri < 2π), respectively. The circles, squares, dia-
monds, and triangles in the figure correspond to the stellar

models for the pulse profiles shown in Figs. 9 and 12 from
left to right panels.
In Fig. 9, the pulse profiles for the neutron-star model

with M=R ¼ 0.2953 are shown as functions of t=T for
various combinations of angles i and Θ, where the panels

FIG. 8. Specific angles of i and Θ, with which the pulse profiles are considered in this paper, on the classification for the stellar models
with M=R ¼ 0.2953 (left panel) and 0.3263 (right panel). In the figure, the circles, squares, diamonds, and triangles correspond to the
stellar models for the pulse profiles shown in Figs. 9 and 12 from left to right panels.

FIG. 9. Pulse profiles for the neutron star model withM ¼ 2.0 M⊙ and¼ 10 km are shown as a function of t=T, where T ≔ 2π=ω, for
various angles i and Θ shown in Fig. 8. The panels from left to right correspond to the angles shown in Fig. 8 with the circles, squares,
diamonds, and triangles. The panels from top to bottom are the observed flux Fob, the flux from the primary hot spot F, and that from the
antipodal hot spot F̄, normalized by F1. The labels of i, ii, iii, and iv denote the classes of pulse profiles depending on the angles i and Θ,
which are explained in the text.
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from top to bottom correspond to the observed flux Fob, the
flux from the primary hot spot F, and that from the
antipodal hot spot F̄, normalized by F1. In the figure,
the labels of i, ii, iii, and iv denote the classification shown
in Fig. 5. The magnified figure of the observed flux except
for the leftmost panel in Fig. 9 is presented in Fig. 10. As
mentioned before, due to the existence of brightening of
flux around ψ ∼ π, F=F1 and F̄=F1 does not monotonically
vary necessarily during 0 ≤ t=T ≤ 0.5. Moreover, we find
that the observed flux has maximum at t ¼ 0 in any cases,
i.e., when the primary hot spot is closest to the observer.
This feature is different from that in the case of ψ cri < π,
which is presented in Appendix (see Fig. 17).
Furthermore, for the adopted combinations of angles i

and Θ, the ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin for the neutron-star model

FIG. 10. Magnified figures of the observed flux in Fig. 9 except for the leftmost panel. The meaning of lines is the same as the
corresponding panels in Fig. 9.

FIG. 11. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron-star model with M=R ¼ 0.2953. The dashed line is the
fitting formula given by Eq. (15).

FIG. 12. Pulse profiles for the neutron star with M ¼ 2.21 M⊙. Notations are the same as Fig. 9.
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Fmax/Fmin 

•  Fmax/Fmin becomes very large for the NSs with M/R > 0.284 
and for smaller (Θ- i ) 
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with M=R ¼ 0.2953 is shown in Fig. 11 as a function of
ðΘ − iÞ=π, where the filled-circles, squares, diamonds,
triangles, inverted-triangle, and open-circle denote the case
for i=π ¼ 0.02, 0.1, 0.2, 0.3, 0.4, and 0.46, respectively.
From this figure, one can observe that Fmax=Fmin becomes
very large as Θ − i approaches zero. This ratio can be
fitted as

Fmax=Fmin ¼
1.311 × 10−3

jΘ − ij3=2
π3=2 þ 1; ð15Þ

which is also shown in Fig. 11 with dashed line. This is also
a different feature compared to the case for ψ cri < π (see
Fig. 19), where the ratio of Fmax=Fmin depends strongly on
the classification of pulse profile as in Fig. 15.
In a similar way, the pulse profiles from the neutron-star

model with M=R ¼ 0.3263 are shown in Fig. 12, and the
magnified figure of the observed flux in Fig. 12 except for
the leftmost panel is presented in Fig. 13. In this case, the
observed flux is quite similar to that for the neutron-star
model with M=R ¼ 0.2953, although the flux from the
primary and antipodal hot spots for M=R ¼ 0.3263 is
different from that for M=R ¼ 0.2953. Even so, the ratio
Fmax=Fmin for M=R ¼ 0.3263 is larger than that for
M=R ¼ 0.2953. Such a ratio is shown in Fig. 14, of which
fitting formula is given by

Fmax=Fmin ¼
4.935 × 10−3

jΘ − ij3=2
π3=2 þ 1: ð16Þ

We remark that the coefficients in Eqs. (15) and (16) should
strongly depend on the stellar compactness, because the
observed flux depends on the stellar compactness as shown
in Fig. 7.

VI. CONCLUSION

The light radiating from a compact object is bent due to
the strong gravitational field produced by the compact
object. As the result, one may observe the photon from the
compact object, even if it is radiated from the backside of
the object. The bending angle increases as the stellar
compactness increases. Even so, most neutron stars are
not so compact that the side completely opposite to the
observer can be seen, i.e., the invisible zone of star usually
exists. However, if the compactness of neutron star is large
enough as M=R ≥ 0.2840, e.g., the neutron star with M ¼
2.0 M⊙ and R ¼ 10.40 km, the invisible zone on the stellar
surface disappears. Namely, the photon radiating from any
position on the stellar surface can reaches the observer.
Since the existence of the 2 M⊙ neutron stars is known
(although the maximum mass of neutron star is not fixed
yet), the high compactnessM=R ≥ 0.2840may be possible
(e.g., SLy and APR EOSs). For such a neutron stars, the
number of photon paths can be different from that for usual
neutron stars. Therefore, in this paper, we made a classi-
fication of the number of photon paths, depending on Θ,
which is the angle between the rotational axis and the
normal vector on the hot spot, and inclination angle i.
Then, we calculated the pulse profiles of rotating neutron

stars with M=R ¼ 0.2953 and 0.3263 for the various
combinations of angles i and Θ, which were compared
with the profiles for the neutron-star model with M=R ¼
0.2658 as an example forM=R ≤ 0.2840. As the result, we
found that the pulse profiles for M=R ≥ 0.2840 are
qualitatively different from those for M=R ≤ 0.2840. The
flux for M=R ≥ 0.2840 has a maximum when the primary
hot spot comes closest to the observer for any i and Θ,
while that for M=R ≤ 0.2840 depends strongly on the
combination of i and Θ. Additionally, we found that the

FIG. 13. Magnified figure of the observed flux shown in the top panels except for the leftmost panel in Fig. 12. The meaning of lines is
the same as the corresponding panels in Fig. 12.

FIG. 14. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron star model with M=R ¼ 0.3263. The dashed line is the
fitting formula given by Eq. (16).
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with M=R ¼ 0.2953 is shown in Fig. 11 as a function of
ðΘ − iÞ=π, where the filled-circles, squares, diamonds,
triangles, inverted-triangle, and open-circle denote the case
for i=π ¼ 0.02, 0.1, 0.2, 0.3, 0.4, and 0.46, respectively.
From this figure, one can observe that Fmax=Fmin becomes
very large as Θ − i approaches zero. This ratio can be
fitted as

Fmax=Fmin ¼
1.311 × 10−3

jΘ − ij3=2
π3=2 þ 1; ð15Þ

which is also shown in Fig. 11 with dashed line. This is also
a different feature compared to the case for ψ cri < π (see
Fig. 19), where the ratio of Fmax=Fmin depends strongly on
the classification of pulse profile as in Fig. 15.
In a similar way, the pulse profiles from the neutron-star

model with M=R ¼ 0.3263 are shown in Fig. 12, and the
magnified figure of the observed flux in Fig. 12 except for
the leftmost panel is presented in Fig. 13. In this case, the
observed flux is quite similar to that for the neutron-star
model with M=R ¼ 0.2953, although the flux from the
primary and antipodal hot spots for M=R ¼ 0.3263 is
different from that for M=R ¼ 0.2953. Even so, the ratio
Fmax=Fmin for M=R ¼ 0.3263 is larger than that for
M=R ¼ 0.2953. Such a ratio is shown in Fig. 14, of which
fitting formula is given by

Fmax=Fmin ¼
4.935 × 10−3

jΘ − ij3=2
π3=2 þ 1: ð16Þ

We remark that the coefficients in Eqs. (15) and (16) should
strongly depend on the stellar compactness, because the
observed flux depends on the stellar compactness as shown
in Fig. 7.

VI. CONCLUSION

The light radiating from a compact object is bent due to
the strong gravitational field produced by the compact
object. As the result, one may observe the photon from the
compact object, even if it is radiated from the backside of
the object. The bending angle increases as the stellar
compactness increases. Even so, most neutron stars are
not so compact that the side completely opposite to the
observer can be seen, i.e., the invisible zone of star usually
exists. However, if the compactness of neutron star is large
enough as M=R ≥ 0.2840, e.g., the neutron star with M ¼
2.0 M⊙ and R ¼ 10.40 km, the invisible zone on the stellar
surface disappears. Namely, the photon radiating from any
position on the stellar surface can reaches the observer.
Since the existence of the 2 M⊙ neutron stars is known
(although the maximum mass of neutron star is not fixed
yet), the high compactnessM=R ≥ 0.2840may be possible
(e.g., SLy and APR EOSs). For such a neutron stars, the
number of photon paths can be different from that for usual
neutron stars. Therefore, in this paper, we made a classi-
fication of the number of photon paths, depending on Θ,
which is the angle between the rotational axis and the
normal vector on the hot spot, and inclination angle i.
Then, we calculated the pulse profiles of rotating neutron

stars with M=R ¼ 0.2953 and 0.3263 for the various
combinations of angles i and Θ, which were compared
with the profiles for the neutron-star model with M=R ¼
0.2658 as an example forM=R ≤ 0.2840. As the result, we
found that the pulse profiles for M=R ≥ 0.2840 are
qualitatively different from those for M=R ≤ 0.2840. The
flux for M=R ≥ 0.2840 has a maximum when the primary
hot spot comes closest to the observer for any i and Θ,
while that for M=R ≤ 0.2840 depends strongly on the
combination of i and Θ. Additionally, we found that the

FIG. 13. Magnified figure of the observed flux shown in the top panels except for the leftmost panel in Fig. 12. The meaning of lines is
the same as the corresponding panels in Fig. 12.

FIG. 14. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron star model with M=R ¼ 0.3263. The dashed line is the
fitting formula given by Eq. (16).
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with M=R ¼ 0.2953 is shown in Fig. 11 as a function of
ðΘ − iÞ=π, where the filled-circles, squares, diamonds,
triangles, inverted-triangle, and open-circle denote the case
for i=π ¼ 0.02, 0.1, 0.2, 0.3, 0.4, and 0.46, respectively.
From this figure, one can observe that Fmax=Fmin becomes
very large as Θ − i approaches zero. This ratio can be
fitted as

Fmax=Fmin ¼
1.311 × 10−3

jΘ − ij3=2
π3=2 þ 1; ð15Þ

which is also shown in Fig. 11 with dashed line. This is also
a different feature compared to the case for ψ cri < π (see
Fig. 19), where the ratio of Fmax=Fmin depends strongly on
the classification of pulse profile as in Fig. 15.
In a similar way, the pulse profiles from the neutron-star

model with M=R ¼ 0.3263 are shown in Fig. 12, and the
magnified figure of the observed flux in Fig. 12 except for
the leftmost panel is presented in Fig. 13. In this case, the
observed flux is quite similar to that for the neutron-star
model with M=R ¼ 0.2953, although the flux from the
primary and antipodal hot spots for M=R ¼ 0.3263 is
different from that for M=R ¼ 0.2953. Even so, the ratio
Fmax=Fmin for M=R ¼ 0.3263 is larger than that for
M=R ¼ 0.2953. Such a ratio is shown in Fig. 14, of which
fitting formula is given by

Fmax=Fmin ¼
4.935 × 10−3

jΘ − ij3=2
π3=2 þ 1: ð16Þ

We remark that the coefficients in Eqs. (15) and (16) should
strongly depend on the stellar compactness, because the
observed flux depends on the stellar compactness as shown
in Fig. 7.

VI. CONCLUSION

The light radiating from a compact object is bent due to
the strong gravitational field produced by the compact
object. As the result, one may observe the photon from the
compact object, even if it is radiated from the backside of
the object. The bending angle increases as the stellar
compactness increases. Even so, most neutron stars are
not so compact that the side completely opposite to the
observer can be seen, i.e., the invisible zone of star usually
exists. However, if the compactness of neutron star is large
enough as M=R ≥ 0.2840, e.g., the neutron star with M ¼
2.0 M⊙ and R ¼ 10.40 km, the invisible zone on the stellar
surface disappears. Namely, the photon radiating from any
position on the stellar surface can reaches the observer.
Since the existence of the 2 M⊙ neutron stars is known
(although the maximum mass of neutron star is not fixed
yet), the high compactnessM=R ≥ 0.2840may be possible
(e.g., SLy and APR EOSs). For such a neutron stars, the
number of photon paths can be different from that for usual
neutron stars. Therefore, in this paper, we made a classi-
fication of the number of photon paths, depending on Θ,
which is the angle between the rotational axis and the
normal vector on the hot spot, and inclination angle i.
Then, we calculated the pulse profiles of rotating neutron

stars with M=R ¼ 0.2953 and 0.3263 for the various
combinations of angles i and Θ, which were compared
with the profiles for the neutron-star model with M=R ¼
0.2658 as an example forM=R ≤ 0.2840. As the result, we
found that the pulse profiles for M=R ≥ 0.2840 are
qualitatively different from those for M=R ≤ 0.2840. The
flux for M=R ≥ 0.2840 has a maximum when the primary
hot spot comes closest to the observer for any i and Θ,
while that for M=R ≤ 0.2840 depends strongly on the
combination of i and Θ. Additionally, we found that the

FIG. 13. Magnified figure of the observed flux shown in the top panels except for the leftmost panel in Fig. 12. The meaning of lines is
the same as the corresponding panels in Fig. 12.

FIG. 14. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron star model with M=R ¼ 0.3263. The dashed line is the
fitting formula given by Eq. (16).
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from top to bottom correspond to the observed flux Fob, the
flux from the primary hot spot F, and that from the
antipodal hot spot F̄, normalized by F1. In the figure,
the labels of i, ii, iii, and iv denote the classification shown
in Fig. 5. The magnified figure of the observed flux except
for the leftmost panel in Fig. 9 is presented in Fig. 10. As
mentioned before, due to the existence of brightening of
flux around ψ ∼ π, F=F1 and F̄=F1 does not monotonically
vary necessarily during 0 ≤ t=T ≤ 0.5. Moreover, we find
that the observed flux has maximum at t ¼ 0 in any cases,
i.e., when the primary hot spot is closest to the observer.
This feature is different from that in the case of ψ cri < π,
which is presented in Appendix (see Fig. 17).
Furthermore, for the adopted combinations of angles i

and Θ, the ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin for the neutron-star model

FIG. 10. Magnified figures of the observed flux in Fig. 9 except for the leftmost panel. The meaning of lines is the same as the
corresponding panels in Fig. 9.

FIG. 11. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron-star model with M=R ¼ 0.2953. The dashed line is the
fitting formula given by Eq. (15).

FIG. 12. Pulse profiles for the neutron star with M ¼ 2.21 M⊙. Notations are the same as Fig. 9.
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FIG. 17. Pulse profiles for the neutron star model withM ¼ 1.8 M⊙ and ¼ 10 km are shown as a function of t=T for various angles i
and Θ as shown in Fig. 16. The panels from left to right correspond to the angles shown in Fig. 16 with the circles, squares, diamonds,
and triangles. The panels from top to bottom are the observed flux Fob, the flux from the primary hot spot F, and the flux from the
antipodal hot spot F̄, normalized by F1. The labels of I, II, III, and IV denote the class of pulse profiles depending on the angles i and Θ,
which is already explained in text.

FIG. 18. Magnified figure of the observed flux shown in the
top-rightmost panel in Fig. 17. The meaning of lines is the same
as the corresponding panel in Fig. 17.

FIG. 19. Ratio of the maximum observed flux Fmax to the
minimum observed flux Fmin as a function of ðΘ − iÞ=π for the
neutron star model with M=R ¼ 0.2658.
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effect of rotation 
•  One should take into account 

–  Doppler factor 

–  time delay 

•  even though the neutron stars with the same M/R, the 
light curve also depends on R 

•  the modification of light curve 
–  break the symmetry of (Θ, I ) 

–  break the symmety in time 
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where a1, a2, b1, b2, c1, and c2 are some constants
depending on the adopted spacetime. This is because
one cannot generally solve the integrations in Eqs. (2)
and (30) analytically even with specific metric functions.
Then, Eqs. (2) and (30) can be expressed as

ψðRÞ ¼
Z

R$

R

b
ffiffiffiffiffiffiffi
AB

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðC − Ab2Þ

p dr

þ b
"
1

R$
þ a1 þ b1 − 2c1

4R2
$

þO
#

1

R3
$

$%
ð35Þ

and

ΔtðtÞ ¼
Z

R$

R

ffiffiffiffiffiffiffi
BC
A

r "
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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%
dr

þ ðb2 − b2minÞ
"

1

2R$
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8R2
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þO
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R3
$

$%
:

ð36Þ

We find that the coefficient of the term of 1=R2
$ in Eq. (13)

in Ref. [19] is not correct, which should be as in Eq. (35),
although the numerical results in Ref. [19] are almost
insensitive to this correction.

IV. PULSE PROFILES WITH VARIOUS
STELLAR MODELS

In this paper, we focus on the case of the Schwarzschild
spacetime outside the star; i.e., the metric functions are
given by

AðrÞ¼1−
2M
r

; BðrÞ¼ 1

AðrÞ
; CðrÞ¼ r2: ð37Þ

In order to see the dependence of the pulse profiles on the
stellar models, we particularly consider three stellar models
as shown in Fig. 4, where the circle and open square denote

the 1.8M⊙ stellar models with Rc ¼ 10 and 13 km, while
the filled square denotes the stellar model with Rc ¼ 10 km
and the same compactness as the model denoted by the
open square. Hereafter, these stellar models are referred to
as A, B1, and B2. In addition, in Fig. 4, the thin solid, thick
solid, and dotted lines denote the stellar models, the stellar
compactness of which is constant to be M=Rc ¼ 0.2840,
0.2658, and 0.2045. For the Schwarzschild spacetime
outside the star, the thin solid line corresponds to the
critical line at which the invisible zone disappears; i.e., the
invisible zone disappears if the stellar compactness is larger
than 0.2840 [25]. With respect to these stellar models, A,
B1, and B2, in order to see the dependence on the stellar
rotation, we consider two cases of the rotational frequencies
ν≡ ω=2π ¼ 0.1 and 700 Hz. In fact, the fastest rotating
pulsar observed up to now is spinningwith ν ¼ 716 Hz [24],
while the strongly magnetized neutron stars, the so-called
magnetars, are slowly spinning with ν ≃ 0.1 Hz. To clarify
the rotational frequency in the name of model, e.g., we refer
to themodel Awith 700Hz asA(700). In this study, we adopt
the Schwarzschild spacetime outside the star even for
considering the fast rotating neutron stars. However, by
taking into account the effects of the time delay and Doppler
factor, the results even with the Schwarzschild spacetime
could be quite similar to the results by the full general
relativistic calculations [22].
The value of ψcri depends only on the stellar compact-

ness after fixing the spacetime geometry, i.e., ψ cri=π ¼
0.908 and 0.728 for the stellar models with M=Rc ¼
0.2658 and 0.2045 in the Schwarzschild spacetime. This
value is a key parameter for determining the classification
how the hot spots can be observed [16,19], depending
on the angles of ðΘ; iÞ as shown in the left panel of Fig. 5.
That is, the regions (i), (ii), (iii), and (iv) correspond to the
cases as follows:

Region I: Only the primary hot spot is always observed;
i.e., the antipodal hot spot is always in the invisible
zone.

Region II: The primary hot spot is always observed, and
the antipodal hot spot is also observed sometimes.

Region III: The primary hot spot cannot be observed
sometimes, and the antipodal hot spot is also observed
sometimes.

Region IV: Both hot spots are always observed.
In the right panel of Fig. 5, the boundaries of such a

classification are shown with solid and dotted lines for
the cases of M=Rc ¼ 0.2658 and 0.2045, respectively. In
the same figure, the open and filled circles denote the
specific angles of i and Θ, which we consider in this
study. So, all cases considered for the stellar model with
M=Rc ¼ 0.2658 are in the class of IV, while the cases
for the stellar models with M=Rc ¼ 0.2045 are in the
class of I, II, III, or IV. We remark that the observed
bolometric flux FðtÞ in the limit of δ → 1 is symmetric
under the interchange of i and Θ [19,25]. One can see

FIG. 4. The stellar models adopted in this study are denoted by
A (circle), B1 (open square), and B2 (filled-square). The thin
solid, thick solid, and dotted lines correspond to the stellar
models with M=Rc ¼ 0.2840, 0.2658, and 0.2045, respectively.
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pulse profile 1.8M⊙ 

Feb. 18-20/2019 ～中性子星の観測と理論～研究活性化ワークショップ 2019@京都大学 13 

FIG. 11. For B1(700), δp and δa are shown as functions of t=T, adopting the combinations of angles of ði=π;Θ=πÞ ¼ ð0.05; 0.45Þ and
(0.45,0.05) in the left panel and those of (0.35,0.45) and (0.45,0.35) in the right panel. In the right panel, we show only when the hot
spots can be observed.

FIG. 12. Same as Fig. 11 but for B2(700).

FIG. 13. The observed bolometric flux Fob normalized by F1 is shown as a function of t=T for A(700), where in each panel ð$; $Þ
denotes the value of (i=π, Θ=π). The solid and dashed lines denote the results with ði=π;Θ=πÞ ¼ ða; bÞ and ðb; aÞ for a < b,
respectively.
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dependence on R 
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FIG. 21. Same as Fig. 16, but for B1(700) in the left panel and for B2(700) in the right panel.

FIG. 20. Same as Fig. 15, but for B1(700) in the left panel and for B2(700) in the right panel.

FIG. 22. Pulse profiles are shown for A(0.1) in the upper panel, B1(0.1) in the middle panel, and B2(0.1) in the lower panel. In the
same way as in Figs. 17 and 19, the dashed, dotted, dot-dashed, and solid lines correspond to the light curves in classes I, II, III, and IV.

HAJIME SOTANI and UMPEI MIYAMOTO PHYS. REV. D 98, 103019 (2018)

103019-12

FIG. 21. Same as Fig. 16, but for B1(700) in the left panel and for B2(700) in the right panel.

FIG. 20. Same as Fig. 15, but for B1(700) in the left panel and for B2(700) in the right panel.

FIG. 22. Pulse profiles are shown for A(0.1) in the upper panel, B1(0.1) in the middle panel, and B2(0.1) in the lower panel. In the
same way as in Figs. 17 and 19, the dashed, dotted, dot-dashed, and solid lines correspond to the light curves in classes I, II, III, and IV.
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spot size effects 
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FIG. 4: Visibility classification of the single hot spot, depending on the angles of i and Θ. The upper panel corresponds to the case with a
pointlike approximation, where three situations exist, i.e., A) the hot spot can be always observed, B) the hot spot can enter the invisible zone
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deviation between the light curve with the effect of the spot area and that with pointlike approximation, in the lower panels of
Fig. 6 we show the relative deviation defined as

∆ ≡ |F/Fmax − F (p)/F (p)
max|

F/Fmax
, (16)
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FIG. 10: Same as Fig. 7, but for the neutron star model with R = 4M .
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FIG. 11: Light curves from the ring-shaped hot spot with ∆ψ = 70◦. The upper and lower panels correspond to the observed flux normalized
by the maximum flux for the neutron star model with R = 5M and 4M , respectively. The panels from left to right correspond to the results
for i = Θ = 30◦, 45◦, 60◦, and 90◦. In each panel, the different lines correspond to the results with different values of ∆ψi, i.e., ∆ψi = 0◦,
10◦, 30◦, 50◦, and 65◦.
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FIG. 12: The ratio of the difference between the maximum and minimum flux to the maximum flux is shown as a function of ∆ψi/∆ψ with
∆ψ = 70◦, where the circles, squares, diamonds, and triangles correspond to the results for i = Θ = 30◦, 45◦, 60◦, and 90◦. The left and
right panels correspond to the results for the neutron star model with R = 5M and 4M .
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FIG. 13: Same as Fig. 11, but for the neutron star model with ∆ψ = 35◦.

the ∆ψi dependence is quite weak. Even so, since the invisible zone becomes larger as the stellar compactness is smaller, one
may have a chance to observe the deviation in the light curve for the less compactness stellar mode. In practice, for i = Θ = 60◦

one can see more dependence of ∆ψi in the light curve for the neutron star model with R = 5M rather than the model with
R = 4M . Anyway, if ∆ψ is less than 35◦, it seems to be difficult to observationally identify the ∆ψi dependence. In such a
case, via the observation of the light curve one may be able to discuss the relation between the stellar compactness and the spot
size without any care for ∆ψi.

IV. CONCLUSION

We calculate bolometric light curves from a single hot spot on a slowly rotating neutron star, taking into account the size effect
of the spot. In order to see the dependence of the size and shape of the hot spot on the light curves, we especially consider the
filled circle hot spot and the ring-shaped hot spot. As a result, we find that the light curve from the filled circle hot spot whose
opening angle is less than 5◦ can be estimated with good accuracy (less than 1%) even with the pointlike approximation if the
center of hot spot is outside the invisible zone. In addition, we show that since the invisible zone backside of the star becomes
smaller as the stellar compactness increases, the light curves may not be eclipsed by the invisible zone if the spot size is large
enough. That is, via the observation of the light curve, one may constrain the relation between the stellar compactness and the
spot size. On the other hand, the light curve from the ring-shaped hot spot depends on the opening angle of inner edge of the
spot, if the opening angle of outer edge of the spot would be large enough. However, if the opening angle of outer edge of the
spot is small (less than ∼ 35◦), it is very difficult to identify the dependence of the opening angle of inner edge on the light
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conclusion 
•  We investigate the pulse profile of highly compact rotating NS for 

which the bending angle exceeds π/2 (M/R > 0.284).  

•  We make a classification of the number of path from the primary 
and antipodal hot spots, dpending on the angles (i, Θ). 

•  We find that the pulse profiles of highly compact NSs are 
qualitatively different from those for the standard NSs. 

–  In particular, Fmax/Fmin is significantly larger for highly compact NSs 

•  Light curve from a fast rotating NS depends on M/R and R. 

•  One would be able to constrain the EOS for NSs through the 
observations of pulse profiles with the help of the observational 
constraint on (i, Θ). 
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