中性子星の観測と理論~研究活性化ワークショップ 2019/2/18-20@京大

Crab pulsar 電波パルスの統計的性質 寺澤敏夫(国立天文台)

Crab pulsar's GRP、観測:名大豊川observatory at 327±10MHz (2017)

付録として、マグネターXTEJ1810-197の電波パルスの統計的性質についても述べます

中性子星の観測と理論~研究活性化ワークショップ 2019/2/18-20@京大

Crab pulsar 電波パルスの統計的性質 寺澤敏夫(国立天文台)

Crab pulsar's GRP、観測:名大豊川observatory at 327±10MHz (2017)

Crabパルサーの周期は約33msなので、上の1秒間には30個のパルスがあるはずだが、 見えているのは巨大電波パルス(Giant Radio Pulse=GRP)1つだけである。

→ほかの「普通のパルス」=normal pulse (NP)はCrab nebulaのノイズに 埋もれているのだろうか?

Main pulse Interpulse

自転 位相 2018/1/3 臼田2.3GHz(帯域128MHz)で観測されたMP GRP (S/N>6) 7時間半で7161個、1時間当たり約1000個、約4秒に1個

観測される信号はパルス(NP+GRP)に background noiseを畳み込んだものである

$$ho_{
m obs}(F) = \int_{-\infty}^{+\infty} dF'
ho_{
m n}(F')
ho_{
m PSR}(F-F')$$
雑音 パルス

雑音はGaussianで既知。Deconvolutionにより p_{PSR}を求める。 その際、次の規格化条件を考慮する:

$$\int_{-\infty}^{+\infty} dF \rho_{\rm n}(F) = 1, \qquad \qquad \int_{-\infty}^{+\infty} dF \rho_{\rm PSR}(F) = 1$$

$$\int_{-\infty}^{+\infty} dF \ F\rho_{\rm n}(F) = 0, \qquad \int_{-\infty}^{+\infty} dF \ F\rho_{\rm PSR}(F) = \bar{F}_{\rm PSR}$$

Crab pulse emission 強度分布モデル (Lundgren+ 1995)

Crab pulse emission 強度分布モデル (Lundgren+ 1995)

Crab pulse emission 強度分布モデル (Lundgren+ 1995)

$$\rho_F(F_v) = \begin{cases} (1-f)\delta(F_v - F_w) & \text{if } F_v < F_c & \dots \text{ NP} \\ CF_v^{-\alpha} & \text{if } F_v > F_c & \dots \text{ GRP} \end{cases}$$

where $C = f(\alpha - 1)F_c^{(\alpha - 1)}$.

Crab 800MHz

PARAMETERS OF GIANT-PULSE FLUX DISTRIBUTION

1991 Date	α	f	Fw (Jy)	F _c (Jy)	χ ²	Average Flux (Jy)
May 19	3.36	0.0238	2.13	63.	0.917	3.06
May 24	3.30	0.0285	0.83	31.	0.984	1.65
May 25	3.30	0.0270	1.43	51.	0.948	2.4
May 26	3.06	0.0229	1.92	60.	1.020	2.8
Errors	0.03	0.0010	0.07	1.	0.002	0.1

GRP対NP
$$r = \frac{\text{GRP}}{\text{NP}} = \frac{\alpha - 1}{\alpha - 2} \frac{fF_c}{(1 - f)F_w}$$
 中均パルスfluxへのGRPの寄与の比率 $\frac{r}{1 + r} \sim 60\%$

この比率について800MHz以外は調べられておらず、周波数依存性が不明。 (Lundgren+に146MHzの場合への言及があるが不十分)。

現在、GRPとX線の相関解析中:特に2.3GHzでの比率が知りたい

Lundgren+(1995): Crabパルサーについての先駆的な結果

$$\rho_{F}(F_{v}) = \begin{cases} (1-f)\delta(F_{v} - F_{w}) & \text{if } F_{v} < F_{c} \\ CF_{v}^{-\alpha} & \text{if } F_{v} > F_{c} \end{cases} \dots \text{ NP}$$

where $C = f(\alpha - 1)F_c^{(\alpha - 1)}$.

PARAMETERS OF GIANT-PULSE FLUX DISTRIBUTION

Crab 800MHz

1991 Date	α	f	F _w (Jy)	F _c (Jy)	χ^2_r	Average Flux (Jy)
May 19	3.36	0.0238	2.13	63.	0.917	3.06
May 24	3.30	0.0285	0.83	31.	0.984	1.65
May 25	3.30	0.0270	1.43	51.	0.948	2.4
May 26	3.06	0.0229	1.92	60.	1.020	2.8
Errors	0.03	0.0010	0.07	1.	0.002	0.1

GRP対NP
$$r = \frac{\text{GRP}}{\text{NP}} = \frac{\alpha - 1}{\alpha - 2} \frac{fF_c}{(1 - f)F_w}$$

特に2.3GHzでの%が知りたい →48%(±10%程度*)

*誤差評価不十分

2.3GHzにおけるGRPとNP成分の平均fluxへの寄与は同程度である。 800MHzの場合と比べ、周波数への顕著な依存性は見出されない。

昨年12月にoutburstしたマグネター:日本での観測 XTEJ1801-197 Hitachi 8GHz P=5.54144sec / 18 Dec 2018 (day 352)

(Sujin et al.のポスター参照)

毎周期5.54144秒のパルスが電圧自乗値(1ms積分)で見える。 8GHz以上では帯域(512MHz)内の群遅延が1ms以下なので、 Dedispersion処理は不要(DM=178 pc cm⁻³)。 XTEJ1801-197 Hitachi 8GHz

全期間を1m秒ごと分割し、各区間ごとのS/Nを計算し、閾値以上の区間を選び出す (上図では、作図の都合上、数区間をまとめてgraphicの1pixelとして表示) 18 Dec 2018 (day 352)

XTEJ1801-197 Hitachi 8GHz

全期間を1m秒ごと分割し、各区間ごとのS/Nを計算し、閾値以上の区間を選び出す (上図では、作図の都合上、数区間をまとめてgraphicの1pixelとして表示)

XTEJ1801-197 Hitachi 8GHz

18 Dec 2018 (day 352)

XTEJ1801-197 Hitachi 8GHz

-10 0 10 20

18 Dec 2018 (day 352) XTEJ1801-197 Hitachi 8GHz D:\TakX_2018352\pax1000usWork\NonS\GRPsearch_2018352020013_ 55954_SNge1.50.bin fmaxmax=99999999.000 phShift yyyy doy mn dd P TDB ms PdotTDB Fmax_DM DM eachSNRgt sumSNRgt usecave goodsec 2018 352 12 18 5541,4398381593670 2.81373331E-012 103.000 8704.000000 178.0000 4.50 4.50 1000 14124 0.0 Xbar s =0.8239512 Xbar_GRP =0.5400000 (65.5378620%) Beki (S/N>2)=-3 =0.04 at S/N=3 А в =0.8650000 at Xb =0.3282673 epsilon =0.0 observed pulse comp background comp Gaussian Preliminar. Model (NP+'GRP') log(PDF)-Convolution結果 べき -3 平均パルス強度への

-4.0 -10 0 10 20

18 Dec 2018 (day 352)

XTEJ1801-197 Hitachi 8GHz

18 Dec 2018 (day 352) XTEJ1801-197 Hitachi 8GHz D:\TakX_2018352\pax1000usWork\NonS\GRPsearch_2018352020013_ 55954_SNge1.50.bin fmaxmax=99999999.000 phShift yyyy doy mn dd P TDB ms PdotTDB Fmax_DM DM eachSNRgt sumSNRgt usecave goodsec 2018 352 12 18 5541,4398381593670 103.000 8704.000000 178.0000 2.81373331E-012 4.50 4.50 1000 14124 0.0 Xbar s =0.8239512 Xbar_GRP =0.5400000 (65.5378620%) 連続した1成分? Beki (S/N>2)=-3 =0.04 at S/N=3 в =0.8650000 at Xb =0.3282673 epsilon =0.2 observed pulse comp background comp Gaussian Model (NP+'GRP') Prelimin log(PDF)-Convolution結果 べき -3 幅を変えてみる 平均パルス強度への 'GRP'の寄与=66% -4.0 -10 10 0 20

横軸: S/N=(信号強度一平均值)/雜音強度

まとめ

Crab pulsarの場合、GRPとNP成分のパルス平均fluxへの 寄与は同程度で、周波数への顕著な依存性は見出されな かった。

今後のCrabパルサーの電波輻射メカニズムの議論では、 GRP成分とNP成分の両方の起源を考える必要がある。

Magnetar XTEJ1810-197の電波アウトバーストにおいても、 NP成分とGRP-like成分が見出され、パルス平均fluxへの両 者の寄与は同程度であった。ただし、Crabの場合と異なり、 これらは連続した1成分として表すべきかも知れない。 10年前のoutburstの際にもGRP-like成分の検出が報告され ており(Serylak+2009, MNRAS 394,295-)、今回との比較は今 後の検討課題。

Backup slides

18 Dec 2018 (day 352) XTEJ1801-197 Hitachi 8GHz D:\TakX_2018352\pax1000usWork\Non5\GRPsearch_2018352020013_55954_SNge1.50.bin fmaxmax=99999999.000 yyyy doy mn dd P_TDB_ms PdotTDB phShift Fmax_DM DM eachSNRgt sumSNRgt usecave goodsec

2.81373331E-012

2018 352 12 18

5541,4398381593670

103.000 8704.000000 178.0000

4.50

4.50

14124

1000