

Stellar Evolution and Nucleosynthesis in Massive Stars

What can do

M. Hashimoto 2018年10月17日

Brief Introduction

- Models of stellar evolution
- Nucleosynthesis of Heavy elements
- (Uncertainties of triple-α and ¹²C(α,γ)¹⁶O reaction rates)
- The evolution of massive stars for 15-70 M_{\odot}
- Nucleosynthesis during the stellar evolution of 25 M_{\odot}
- Nucleosynthesis during the supernova explosion of 25 M_{\odot}

INTRODUCTION

Models of stellar evolution

🐝 九州大学

Central Evolution of $M_{\rm ms} \sim 9M_{\odot}$

九州大学

Explosive nucleosynthesis $(T_9 = T/10^9 \text{ K})$

九州大学

The shock wave coming out from the core heats up the matter (Theilemann, Nomoto, Hashimoto 1990)

T₉ > 5.0 : Explosive Si and O burnings produces NSE elements : ⁵⁶Ni, ^{57,58}Ni, ⁴⁴Ti ,

⁵⁶Ni $\xrightarrow{6.10 \text{ day}}$ ⁵⁶Co + γ + ν_e (electron capture)

⁵⁶Co
$$\xrightarrow{77.12 \text{ day}}$$
 $\begin{cases} ^{56}\text{Fe} + \gamma + \nu_e & (\text{electron capture}) \\ ^{56}\text{Fe} + e^+ + \gamma + \nu_e & (\beta^+ - \text{decay}) \end{cases}$

 5.0 > T₉ > 4.0 : Incomplete Si burning and explosive Oxygen burning products : ²⁸Si, ³²S, ³⁶Ar, ⁴⁰Ca

•4.0 > T_9 > 3.5 : Explosive Ne burning products : ¹⁶O, ²⁸Si, ³²S,

•3.5 > T_9 > 2.0 : Explosive C burning products : ²⁰Ne, ²⁴Mg,

Nucleosynthesis of heavy elements

Nucleosynthesis of heavy elements Sites for the solar system abundances

Two types of the s-process

Weak s-process

- Site : Massive stars $M \gtrsim 10 M_{\odot}$
- •Stage : He to C burning stage
- Source reaction : ${}^{22}Ne(\alpha,n){}^{25}Mg$

• Elements : $60 \leq A \leq 90$

Main s-process

- Site : Mediate stars $2 M_{\odot} \leq M \leq 10 M_{\odot}$
- •Phase : AGB phase
- -Source reaction : ${}^{13}C(\alpha,n){}^{16}O$
- •Elements $90 \leq A \leq 210$

Details of the weak *s*-process

• Site : Massive stars $M \gtrsim 10 M_{\odot}$

•Elements : $60 \leq A \leq 90$

 $\begin{array}{c|c} \mbox{Main reactions during the s-process} \\ \mbox{He-b} & {}^4\mbox{He}(\alpha\alpha,\gamma){}^{12}\mbox{C-b} & {}^{12}\mbox{C}({}^{12}\mbox{C},\alpha){}^{20}\mbox{Ne} \\ & {}^{12}\mbox{C}(\alpha,\gamma){}^{16}\mbox{O} & {}^{12}\mbox{C}({}^{12}\mbox{C},\gamma){}^{24}\mbox{Mg} \\ & {}^{12}\mbox{C}({}^{12}\mbox{C},p){}^{23}\mbox{Na} \end{array}$

Reactions responsible for neutron production He-burning ${}^{14}N(\alpha,\gamma){}^{18}F(\beta^+){}^{18}O(\alpha,\gamma){}^{22}Ne \rightarrow {}^{22}Ne(\alpha,n){}^{25}Mg$ α : produced by pp-chain. ${}^{14}N$: produced by CNO cycle C-burning ${}^{12}C({}^{12}C,\alpha){}^{20}Ne \rightarrow {}^{22}Ne(\alpha,n){}^{25}Mg$ ${}^{12}C({}^{12}C,n){}^{23}Mg$ (less than 1% of ${}^{12}C+{}^{12}C$ reactions)

Remark of uncertainties of Helium burning reaction rates

$^{12}C(\alpha,\gamma)^{16}O$ reaction rate

- Direct experimental measurements and extrapolation to the low energy
 - Caughlan et al. 1985 (CF85)
 - Caughlan and Fowler 1988 (CF88)

However, the extrapolation is difficult

- β delayed α decay of ¹⁶N reaction [¹⁶N(β , α)¹²C]
 - Buchman et al. 1996 (Bu96)

Influence of ${}^{12}C(\alpha,\gamma){}^{16}O$ rate on the *p*-process (Rayet at al. 1995)

Nucleosynthesis during the stellar evolution and supernova explosion

Three different 25 M_{\odot} explosion models:

- •Open square : normal case, ${}^{12}C(\alpha,\gamma){}^{16}O$ rate with CF85
- •Asterisk : ${}^{12}C(\alpha,\gamma){}^{16}O$ rate divided by a factor 2.5 with CF88
- Black square : explosion energy increased by a factor of 1.5

The other reaction rate uncertainty ¹²C+¹²C reaction rate uncertainty (Bennett et al. 2012)

•Three ¹²C+¹²C reaction rate

ST: 'standard' rate of Caughlan & Fowlar 1988 (CF88)

CU : Upper limit of CF88 rate

CI : Intermediate rate of the two rates

Summary of introduction

Massive stars ($M > 10 M_{\odot}$)

- evolve to onion like structure (He,C,O,Si,Fe-group nuclei)
- collapse --- supernova explosion

Heavy elements (A > 60)

- synthesized by the s-, p-, r-process
- weak s-process : He, C burning in massive stars
- *p*-process : photodisintegration

(supernova explosion/stellar evolution)

Outline

Introduction

- The final fate of stellar evolution
- Nucleosynthesis of Heavy elements
- Uncertainties of triple- α and ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rates

Model Calculations

- Evolution of massive stars for 15-70 M_{\odot}
- Nucleosynthesis during the stellar evolution of 25 M_{\odot}
- Nucleosynthesis during the supernova explosion of 25 M_{\odot}

STELLAR EVOLUTION

Method of the stellar evolution calculation

Including 30 nuclei
 n, p, ⁴He, ¹²C, ¹⁴N, ^{16,18}O, ²⁰⁻²²Ne, ²³Na, ²⁴⁻²⁶Mg, ^{26,27}AI, ²⁸⁻³⁰Si, ^{30,31}P, ³¹⁻³⁴S, ³⁵CI, ^{36,38}Ar, ³⁹K, ⁴⁰Ca

Models

- Zero age main sequence (ZAMS) : 15, 18, 20, 25, 40, 70 M_{\odot}

(He core mass : 4, 5, 6, 8, 16, 32 M_{\odot})

- Reaction rates

Triple alpha : OKK rate (Ogata et al. 2009)

: Fynbo rate (Fynbo et al. 2005)

- $^{12}C(\alpha,\gamma)^{16}O$: CF85 rate (Caughlan et al. 1985)
 - : Bu96 rate (Buchmann et al. 1996)

Fynbo-CF85 OKK-CF85 Fynbo-Bu96 OKK-Bu96

 \times 6 models (M_{ms} mass) = 24 models

RESULTS OF STELLAR EVOLUTION CALCULATION

Stellar evolution (Fynbo-CF85) : presupernova

Results : Off center burning

OKK-CF85 $M_{\alpha} = 4 M_{\odot}$ OKK-Bu96 $M_{\alpha} = 4, 5, 6 M_{\odot}$

Results : Off center burning

Final fate of stellar evolution (Nomoto and Hashimoto 1986)

• For 10-13 M_{\odot} , neon is ignited at the off-center.

IMF averaging

Salpeter's Initial Mass Function (IMF) $\phi(M) \propto M^{-2.35}$ (Coefficient of the number of single stars interval *M* to *M* + *dM*)

$$X_{\text{IMF}}(i) = \frac{\int_{M_1}^{M_2} X(i, M) M_{\text{ej}} \phi(M) dM}{\sum_j \int_{M_1}^{M_2} X((j, M) M_{\text{ej}} \phi(M) dM}$$

Erni et al. (2006)

Stars have been only feedback zero-metallicity stars with $M \sim 10 - 50 M_{\odot}$.([O/H] ~ -2.5)

$$M_1 = 15 M_{\odot} M_2 = 50 M_{\odot}$$

EFFECTS OF UNCERTAINTIES OF REACTION RATES ON HEAVY NUCLEI

Post process nucleosynthesis calculation

Stellar evolution calculations include 30 elements. For *s*-, *p*-processes, it is required to inclue many elements.

Re-calculation of nucleosynthesis with a larger network by using evolution data => (post process)

• stellar model : $8M_{\odot}$ He core ($M_{ZAMS} = 25 M_{\odot}$)

 Input physics : Density, Temperature, convective regions as a function of time

- Initial abundances
 - Solar system abundances (Anders and Grevesse 1989)
 - C,O \rightarrow ¹⁴N (CNO cycle)

S-PROCESS TILL THE END OF C BURNING

Effects of a New Triple-α Reaction on the s-Process in Massive Stars Y. Kikuchi, M. Ono, Y. Matsuo, M. Hashimoto, and S. Fujimoto *Progress of Theoretical Physics* Vol. 127, No. 1, pp 171-178 (2012)

Effects of a New Triple- α Reaction on the s-Process in Massive Stars (Kikuchi et al. 2012)

We have investigated the influence of the OKK rate for the weak *s*-process nucleosynthesis.

Stage : He burning to C burning Model : $8M_{\odot}$ He core ($M_{ms} = 25 M_{\odot}$)

Reaction rates Triple-α : Fynbo rate or OKK rate

¹²C(α,γ)¹⁶O : CF85 rate post process : Bu96 rate (JINA REACLIB)

Products of the *s*-process

Overproduction factor $(X(i)/X_0(i))$

S-PROCESS DURING STELLAR EVOLUTION BEFORE CORE-COLLAPSE

Nucleosynthesis during whole stellar evolution stage

OKK rate affects the nucleosynthesis during He burning.

Consistent for evolution and post process reaction rate

Recalculation from He burning to presupernova stage

Fynbo-CF85 Fynbo-Bu96 OKK-CF85 OKK-Bu96

Summary

The *s*-process calculation till presupernova stage OKK rate (triple-α reaction rate), proceeds very fast :

- -the s-process is restrained during He burning
- revitalizes the s-process during C burning stage but the overproduction is influenced also by ¹²C(α,γ)¹⁶O reaction.

OKK-CF85 : enhanced light *p*-nuclei (60 < A < 90) Fynbo-Bu96 : enhanced light and intermediate *p*-nuclei (90 < A < 150) OKK-Bu96 : enhances heavy *p*-nuclei (A > 150)

Summary

P-process till presupernova stage (using 4 reaction rate sets)

- Different distributions of main elements (C, O...) are changed by combination of reaction rates
 - \rightarrow influence on temperature and density distribution
- •Temperature and density at the presupernova :

high ----- low Fynbo-CF85 OKK-Bu96 OKK-CF85 Fynbo-Bu96

- Fynbo-CF85: gravitational contraction effectively
- The others: expansion by C shell burning above the O+Ne shell

-p-nuclei production : affected by the temperature distribution

NUCLEOSYNTHESIS IN SUPERNOVA EXPLOSION

Estimate of the ejected yields

Supernovae explosion calculation

Supernova explosion mechanism has not been established yet.

Neutrino transport, standing shock instability, multi-dimensional simulation...

We only want to estimate the ejected mass of elements

 1 Dimensional Hydrodynamic Code (Johnston & Yahil 1984), which was developed for the studies of SN1987A .
 Method of thermal bomb (artificial explosion without collapse)

core

1 Dimensional Hydrodynamic Code(Johnston & Yahil 1984) Thermal bomb method (only explosion without collapse)

$$- \begin{cases} \frac{\partial V}{\partial t} - \frac{\partial (4\pi r^2 v)}{\partial m} = 0, \\ \frac{\partial q}{\partial t} + \frac{\partial (4\pi r^3 p)}{\partial m} = v^2 + \frac{3p}{\rho} - \frac{Gm}{r} - 4\pi r^3 \rho \frac{\partial \Phi}{\partial m}, \\ \frac{\partial e}{\partial t} + \frac{\partial (4\pi r^2 v p)}{\partial m} = H - C. \end{cases}$$

$$V = \rho^{-1}$$
$$q = \boldsymbol{v} \cdot \boldsymbol{r}$$
$$e = \frac{v^2}{2} + U - \frac{GM}{r} + \phi$$

- m: the mass coordinate
- V: the specific volume
- r: the radius

九州大学

- v: the velocity
- q: a scalar specific momentum
- ρ : the mass density

- e: the specific energy
- U: the specific internal energy
- G: the gravitational constant
- Φ : an external potential (assumed to be time independent)
- P: the pressure
- H C: the net energy source term, Heating and Cooling

Nuclear reaction α-network: 13 spices ⁴He,¹²C,¹⁶O,²⁰Ne,²⁴Mg,²⁸Si,³²S,³⁶Ar,⁴⁰Ca,⁴⁴Ti,⁴⁸Cr,⁵²Fe,⁵⁶Ni

Supernovae explosion calculation

Input models

Pre supernova models : $M_{ms} = 25 M_{\odot}(M_{\alpha} = 8 M_{\odot})$ (Fynbo-CF85, Fynbo-Bu96, OKK-CF85, OKK-Bu96) Distributions of Temperature, density, pressure and mass fraction

Input parameters

Two parameters Input energy & input location of mass cut

① Mass cut : just above the Fe core

(2) Input energy determined from the explosion energy : 10⁵¹ erg

Models	Fynbo,CF85	Fynbo,Bu96	OKK,CF85	OKK,Bu96
input energy ($\times 10^{51}$ erg)	1.44	1.06	1.30	1.16
input point(${ m M}_{\odot}$)	1.22-1.37	1.22-1.29	1.21-1.26	1.31-1.36

Overproduction factors (A < 110): CF85

•Normalized overproduction factors by that of most popular nuclei ${}^{16}O \times 2^{\pm 1}$

FynboCF85 $\cdot 20 \le A < 32$: well reproduced • s-process : well reproduced **OKKCF85**: ²²Ne, ²³Na, ²⁵Mg over produced $27 \le A \le 32$: well reproduced s-process : well reproduced the least in the 4 models

Results of *p*-elements

FynboCF85: FynboBu96: OKKCF85: OKKBu96:

Before supernova explosion

OKKCF85 enhanced light p-nuclei

FynboBu96 enhanced light and intermediate p-nuclei

After supernova explosion

Decayed their elements FynboCF85 most enhanced

The pattern is similar.

Summary of nucleosynthesis in supernova explosion

- •We calculate supernova explosion and the nucleosynthesis by using results of stellar evolution calculations (M_{α} =8 M_{\odot} with 4 reaction rate models).
- •OKK models : the elements (Ne, Mg, Na) are overproduced against ¹⁶O
- -s-nuclei : For all models, no deviation from pre-supernova stage

- He and C burning are significantly important.

• *p*-nuclei : no drastically change by reaction rate dependence

but, the yields relate to peak temperatures

and the size of the *p*-process layers

Conclusion

Nucleosynthesis in massive stars and supernova explosions

Comparison with the solar abundances

•20<A<32 nuclei :

Fynbo rate-sets are consistent (in particular Fynbo-CF85) OKK rate sets overproduce the elements.

 s-process : Element production is affected by the combination of reaction rate sets.

However the ejecta of supernova becomes similar (except OKK-CF85)

• *p*-process : temperature distribution before supernova is important.

Concluding remarks

Big-Bang First Star Stellar evolution Supernova explosion Nucleosynthesis Chemical evolution of each elements

