

Athena optics calibration plan

M.Guainazzi, J.de Bruijne (ESA/SCI-S, ESTEC, Noordwijk, The Netherlands) J.W. den Herder (SRON, Utrecht, The Netherlands)

With contributions by: The Athena Telescope Working Group (Chairs: R.Willingale, G.Pareschi)

ESA UNCLASSIFIED - For Official Use

═**ा ≥ ╬ ═ ╬ ║ ═ ╧ ═ ║ ║ ═ ═ ╬ ═ Ҩ ║** ═ **: : : :**

European Space Agency

Scientific goals of Athena

Science theme: The Hot and Energetic Universe

- The Hot Universe: How does baryonic matter assemble in the large-scale structures? How do they evolve from the formation epoch to the present day?
- The Energetic Universe: How do black holes grow and shape galaxies?
- The Observatory and Discovery science:
 - Observatory science across *all corners of astrophysics*
 - Fast response (\leq 4 hours) capability to study transient sources

= II 🛌 == + II = 🚝 = II II = = = = H 🖬 🖬 II = II 🗰 💥 II

The "Hot Universe" with Athena

z=1 galaxy cluster (*Athena* vs. XMM/*Hitomi*) Fe L Mq Ar Ca Fe-K 10- 10^{-} 10^{-3} 10^{-4} — Athena X-IFU — XMM–Newton EPIC PN — Hitomi SXS 0.2 0.5 2 Energy (keV) ©DB/X-FIU

Athena will trace the evolution of heavy elements from $z\sim2$ to the local Universe

The "Energetic Universe" with Athena

in

ARA8A

Dickinson,

Madal

European Space Agency

Mission profile

- Single telescope, Silicon Pore Optics (SPO) technology, 12 m focal length (f.l.), ≥1.4 m² area @1 keV, 0.25 m² @6 keV
- **WFI** (Active Pixel Sensor Si detector): wide-field (40'x40') spectral-imaging, CCD-like energy resolution (120-150 eV @6 keV)
- **X-IFU** (cryogenic imaging spectrometer): 2.5 eV energy resolution, 5' diameter effective field-of-view, ~5" pixel size
- Count rates capabilities: >1 Crab (WFI)/~1 Crab (X-IFU; 30% throughput)
- \leq 4 hours response with a ~50% efficiency to observe a Target of Opportunity (ToO) in a random position in the sky
- Launch early 2030s, Ariane 6.4, L2 halo orbit (TBC)

= II 🛌 == + II = 🚝 = II II = = = = H 🖬 🖬 🖬 II = 👬 🗗 💥 🙌

Silicon Pore Optics technology

Developed by ESA and Cosine Measurement System (cosine.nl) over the last decade

Courtesy M.Bavdaz (ESA/ESTEC), M.Collon (Cosine)

Willingale et al., 2013, arXiv:1307.1709

Matteo Guainazzi | Athena Calibrations | 14th IACHEC, 20 May 2019

*

European Space Agency

SPO terminology

Collon et al., 2016, SPIE, 9905, 28

SPO mirror stack (35 plates)

Mirror Module (MM)

Mirror Assembly Module (MAM) ~600 MMs

*

European Space Agency Matteo Guainazzi | Athena Calibrations | 14th IACHEC, 20 May 2019

Optics calibration requirements

Ref.

number

Requirement

Validated against science requirements

AGN black hole spin distributions due to relative effective area uncertainties

*

AST-R-02	Focal length (on-ground)	1 mm	1 mm	
AST-R-03	Focal length (in-flight)	1 mm	1 mm	
AST-R-05	Optical axis (w.r.t.	10″	10″	
	MA_PCS)			2
AST-R-06	Optical axis (w.r.t.	10″	10″	1
	SC_PCS)			1
AST-R-07	Position of the detector	0.25 mm	0.25 mm	rence
	w.r.t mirror			Occur
PSF-R-01	PSF HEW	0.1″/0.1″/0.5″	0.1"/0.1"/0.5"	icy of
PSF-R-02	PSF 2-D shape	0.1″	0.1″	equer
EFF-R-01	Absolute effective area on-	12% (WFI)	6%	F
	axis	10% (X-IFU)		
EFF-R-03	Relative effective area on-	5% (X-IFU)	2%	
	axis	3% (WFI)		
EFF-R-04	Relative effective area off-	5%	4%	
	axis ⁴			
EFF-R-05	Relative effective area,	4%	1%	
	fine structure			
BKG-R-03	Stray light	5%	5%	t

Total value

MA value

▋▌ ▶▖ \$\$ ▀ + ▋▌ ▀ 뜰 〓 ▋! ▋▌ 〓 〓 ☵ ▄ ◙ ▋▌ 〓 〓 봄 Æ

Telescope calibration: assumptions

- A physical model of the telescope plays a crucial role, based on a common open-access database and validated by experimental data
- No resources available to cover the whole calibration parameter space for each and all MMs – multi-tier, flexible approach required
- [implying careful control on the performance homogeneity, and the sub-sample properties vis-à-vis the parent sample]
- Identify parameters to be calibrated on-ground (*e.g.*, PSF large-scale 2-D structure) vs. in-flight (*e.g.*, contamination)

= II 🛌 ## ## II 💻 🚝 == II II = == ## 🛶 🔯 II == ## EI 💥 🙌

Optics database

Optics database

= II 🖕 :: 🖛 + II 💻 🚝 = II II = = = :: 🖬 🛶 🔯 II = :: II 🕮 💥 🙌

European Space Agency

Calibration flow

- Process steps
- "Bulk verification/calibration" = on all or a substantial fraction of MMs
- "Sub-assembly [detailed] calibration" = on some elements per row (~a few MMs)
- Integrated-MAM
 calibration for science
 performance assessment

European Space Agency

Recommendations: flow & facilities

- MM assembly, alignment: synchrotron facility (*e.g.*, BessyII)
- Fine structure: long-baseline synchrotron beam with homogeneous full illumination with $\Delta E \le 1$ eV resolution on ~2 plates/row at, e.g., C, B, Si, Ir
- MM verification: A_{eff}, PSF, and FL measurements at 2 E on all MMs at a dedicated facility with good collimation, ~2 MM/day rate, close to MM production and/or MAM integration sites
- MM [detailed] calibration: A_{eff}, vignetting, PSF (on-/off-axis) at 5-10 E on ~4 MMs/row at long beam facility (2MMs/row spare; 2MMs/row back to flow)
- MAM calibration: Full characterization of science performance (A_{eff}, PSF in-/out-focus, vignetting, straylight, at ~2-10 E) at a long*er*-beam facility with ≥90% illumination (implying ≥800 m)

Recommendations: flow & facilities

- MM assembly, alignment: synchrotron facility (*e.g.*, BessyII)
- Fine structure: long-baseline synchrotron beam with homogeneous full illumination with $\Delta E \le 1$ eV resolution on ~2 plates/row at, *e.g.*, C, B, Si, Ir
- MM verification: A_{eff}, PSF, and FL measurements at 2 E on all MMs at a dedicated facility with good collimation, ~2 MM/day rate, close to MM production and/or MAM integration sites
- MM [detailed] calibration: A_{eff}, vignetting, PSF (on-/off-axis) at 5-10 E on ~4 MMs/row at long beam facility (2MMs/row spare; 2MMs/row back to flow)
- MAM calibration: Full characterization of science performance (A_{eff}, PSF in-/outfocus, vignetting, straylight, at ~2-10 E) at a long*er*-beam facility with ≥90% illumination (implying ≥800 m)

= II 🖕 ## ## II = 🚝 = II II = = = ## 🛶 🔯 II = ## ED 💥 🙌

European Space Agency Matteo Guainazzi | Athena Calibrations | 14th IACHEC, 20 May 2019

BEaTriX facility

Courtesy G, Pareschi (OAB/INAF)

European Space Agency

Recommendations: flow & facilities

- MM assembly, alignment: synchrotron facility (*e.g.*, BessyII)
- Fine structure: long-baseline synchrotron beam with homogeneous full illumination with $\Delta E \le 1$ eV resolution on ~2 plates/row at, e.g., C, B, Si, Ir
- MM verification: A_{eff}, PSF, and FL measurements at 2 E on all MMs at a dedicated facility with good collimation, ~2 MM/day rate, close to MM production and/or MAM integration sites
- MM [detailed] calibration: A_{eff}, vignetting, PSF (on-/off-axis) at 5-10 E on ~4 MMs/row at long beam facility (2MMs/row spare; 2MMs/row back to flow)
- MAM calibration: Full characterization of science performance (A_{eff}, PSF in-/out-focus, vignetting, straylight, at ~2-10 E) at a long*er*-beam facility with ≥90% illumination (implying ≥800 m)

= II 🛌 == + II = 🚝 = II II = = = = H 🖬 II = II = H 🖬 🖬

A vertical facility for MAM calibration

ada Larjo BCV (

□ Micro-focused X-ray sources □ Collimator able to produce a 1["] parallel beam □ The mechanical system performs the raster scan in \sim 4 hours 20m high Vacuum Vessel □ Able to calibrate area and PSF of each MM \Box Off-axis angle up to 3 degrees possible (by off-setting the source+collimator system Design funded by ESA □ Preliminary design 12/2019; final design 6/2020

Courtesy A.Moretti (OAB/INAF)

Summary

- Athena Study in Phase A
- Next milestone: Mission Formulation Review (Q3/2019)
 - Calibration requirement flow from science requirements
 - Payload calibration plans
- Comprehensive ground-based calibration plan. How much we can afford is a potential issue e.g., end-to-end test?
- Adoption: 2021. Launch early 2030s