New clocking mode for X-ray CCD detector

<u>Hiroshi Murakami (Tohoku Gakuin University)</u>, Shunji Kitamoto , Rika Umezu (Rikkyo University), Kiyoshi Hayashida (Osaka University), Koji Mori (University of Miyazaki) and the XRISM Xtend team

X-ray CCD detector

- Pros
 - small pixel size
 - large number of pixels with a few readout nodes
- Cons
 - <u>long exposure time</u> (to read many pixels in sequence)
 - (requires clocking signal)

CCDs exhibit good imaging quality and moderate time resolution

pile-up problem

• two (or more) photons enter to the same pixel or neighbor

We cannot know incident X-ray energy of each photon

mitigation method

- Window mode: readout a certain region of CCD
 → reduced field of view
- Burst mode: use a part of exposure time
 → loose large fraction of X-ray events
- P-sum mode: continuous transfer

→ loose coordinate information of one direction
Loose significant information

• New mode: intermediate of normal and P-sum (or fullframe) mode:

 \rightarrow Reduce pile-up fraction without losing statistics nor information of position

New clocking mode: Panning mode

- A certain number of the vertical transfer is performed in the imaging area during each exposure. (We don't move satellite attitude or CCD camera)
- ◆ Readout in the storage area is the same as that in the normal mode.
- The number of the transfer (during exposure time) is a setting parameter (N_{pan})
- ◆ Shape of each event is unchanged. Accumulated image is elongated to vertical direction. → Reduce event rate of each pixel

LED irradiation experiment performed with a CCD

Umezu, R. et al. Review of Scientific Instruments 85, 075103 (2014)

Simulation (Suzaku observation)

Simulated panning image (N_{pan}=240) (XIS observaion of Cyg OB2 region)

Tolerance of pile-up

Count rate per one pixel in one shot image becomes small with each mode \rightarrow reduce pile-up fraction

• Window/Burst

Pixel rate of 1 shot image becomes small

- $1/N_{\rm win}$ window size $\rightarrow 1/N_{\rm win}$
- $1/N_{\rm bst}$ snap shot time $\rightarrow 1/N_{\rm bst}$
- P-sum mode

point source image is extended to CCD size

• image size s, CCD pixel size $X * Y \rightarrow s/Y$

Tolerance of pile-up

Count rate per one pixel in one shot image becomes small with each mode \rightarrow reduce pile-up fraction

• Panning mode

The deformation of point source image is related to number of vertical transfer N_{pan}

• image size $s \rightarrow s/N_{pan}$

s = 10 pixel

incident count rate (cnt/frame)

s = 10 pixel

incident count rate (cnt/frame)

incident count rate (cnt/frame)

incident count rate (cnt/frame)

Decrease of pile-up fraction with realistic PSF (Xtend/XRISM)

- The peak of Point Spread Function becomes 1/16 with n=150 (bpix)
 - \rightarrow factor of 2 better than 1/8 window mode

Time resolution

• The shift of the image is controlled by clocking signal

→ Fine time resolution can be archived by using position of X-ray event

 Light curve is smoothed by PSF (If PSF is equivalent to pixel size, time resolution becomes 1/ N_{pan})

Spectroscopic performance

• Comparison with normal mode;

The difference is only a small number of vertical transfer $(0 \sim N_{pan})$

Little degradation of energy resolution is expected

cf. P-sum mode

Continuous clocking (with different voltage)

Different event extraction (split pattern is different)

Charge injection is impossible

 \rightarrow large impact to energy resolution

Summary : Panning Mode Trade-off

- pros
 - Reduce pile-up fraction
 - Keep full region of imaging area
 - Exposure time is not lost in most of the imaging area
 - Possible improvement in time resolution
 - No change in hardware is needed, of course.
- cons
 - PSF is elongated
 - degradation of imaging capability
 - S/BGD ratio is reduced
 - The exposure time at the CCD boundary of the far side from the FOV center is reduced
 - Need additional calibration time (there would be little difference in spectroscopy)
 - Impact to processing software

- pixel count rate is reduced
- relative position indicates photon arriving time

(not 1 to 1 relation smeared with

If a source has a variability within exposure time, the image should be different from the constant flux case. In principle, variability information can be extracted.

 \leftarrow A part of exposure is lost at the pixel boundary (far side of the FOV center)

supplemental slides

TABI	TABLE I: Characteristics of various modes, for the observation of point-like objects.									
		Normal	Window	Burst	P-sum	Panning				
	Pile-up Tolerance	1	$N_{ m window}$	$N_{\rm burst}$	$N_{\rm line}/N_{\rm image}$	$1 \sim N_{\rm line}/N_{\rm image}$				
	Field of View	1	$N_{\rm window}^{-1}$	1	1	1				
	Photon Statistics	1	1	$N_{\rm burst}^{-1}$	1	1				
	Time Resolution	1	$N_{\rm window}^{-1}$	1	$1/N_{ m line}$	$1 \sim N_{\rm image}/N_{\rm line}$				

1

(

 $\mathbf{1}$

 \triangle

Pattern Selection \bigcirc

Image Resolution 1

 $N_{\rm line}/N_{\rm image} \sim N_{\rm line}/N_{\rm image}$

Pile-up limit of XRISM/Xtend scaled from Suzaku/XIS

		Suzaku/XIS	XRISM/Xtend
Frame integration time (sec)		8	4
Pixsel scale (arcsec)		1.04	1.74
Effective area	1.5 keV	390 (BI)	400
(cm²)	8 keV	100 (BI)	300
HPD (arcmin)		2.0	1.26

pixel count rate \propto (frame time) x (pixel scale)² x (HPD)⁻² x (Effective area)

ightarrow 3.6 \sim 10.6 times larger than XIS

(1 keV: (4/8)x(1.74/1.04)²x(2.0/1.26)²x(400/390)~3.6 8 keV: (4/8)x(1.74/1.04)²x(2.0/1.26)²x(300/100)~10.6)

Xtend will suffer a severer pile-up problem CTIONOOPile-up (3%) limit of XIS : 12 cts/sec \sim 10 mCrab \rightarrow 1.3 mCrab in Hitomi/SXI and XRISM/Xtend

We use factor 7.7 in the following discussion to be consistent with Astro-H SWG discussion

https://heasarc.gsfc.nasa.gov/docs/suzaku/prop_tools/suzaku_td/node10.html#SE CTION001022100000000000000

Data from https://swift.gsfc.nasa.gov/results/bs105mon/

AGN in Swift BAT 105months Catalog

Data from https://swift.gsfc.nasa.gov/results/bs105mon/

AGN in Swift BAT 105months Catalog

Xtend/SXI pile-up limit (3%)

Pile-up is a problem not only for bright binary sources but also for a significant fraction of XRISM target AGNs Perseus cluster observed with Hitomi SXI (Nakajima+2018)

Overlaid 1/8 window area (2.35' width)

1/8 Window mode

- Mitigates pileup by factor of 8
- Lose Information of the Sky around the target (Some fraction of Resolve FOV is outside the window)
 - One of the role of Xtend is to estimate contamination into Resolve FOV.
- Periodic (every 0.5s) deadtime up to 10%

cf

Annular Extraction or Burst Mode can also mitigates pileup, but lead to loss of photons (dead area at the PSF core or deadtime)

1/16 window mode is not adequate, as its width is only 1.2'

pile up rateの計算

- 仮定する条件
 - 天体の明るさ:f(cnts/sec)
 - 露出 1sec (normal mode)
 - 天体の広がり (PSF): a x a (pixel²), 一様
 - CCDの縦方向のpixel数: y = 1024 (pixel)

→1 pixel内に入る平均photon数を計算し、 pile upの指標とした normal modeの場合: (pile up rate) = f /a²

modeごとのpile up rate

- normal mode
 - f/a^2
- window (1/n size)
 - f /a² / n
- P-sum

 $f/a / y = (f/a^2) x a/y$

changes in software

item	change	impact	
position	+1/2n	small	
timing		0	
	rawy-rawy₀ -> ∆t	large	
	$1/(1-c_{vs})^{n/2}$	small	
energy	rawy-rawy ₀ correction	large	
		0	
	x(0~1)?	small or 0	
		0	

If the process depends on the source position, impact becomes large

Changes in software (spectrum)

- 1. CTI correction : Additional 0 n (very) slow transfer
 - A) Modified CTI correction (1): $\Delta E \bigtriangleup$
 - 1. Add CTI correction for (very) slow transfer of n/2 lines

 $PH = PH_0 (1 - c_f)^{Y_0} (1 - c_{f0})^{Y_1} (1 - c_a)^{Y_2} (1 - c_{a0})^{Y_3} (1 - c_s)^{Y_4} \cdot (1 - c_{vs})^{n/2}$

- B) Modified CTI correction (2): ΔE
 - Reduce uncertainty of the number of very slow transfer by using "rawy-rawy₀"
- C) No additional correction: $\Delta E \triangle$
 - 1. No change in software (sxipi)
 - 2. Calibrate energy gain (similar to window mode of Suzaku)
- + Prepare CTI parameters, response function for panning mode in all cases

*Sawtooth correction is identical to that of normal mode; relative position is preserved

**Unified correction may be possible by referring the number of transfer for all mode

prediction of energy resoltion

• CTI effect with additional 0-n bpix transfer $(1 - c_{\nu s})^{0 \sim n}$

ex. C_{vs} = 5x10⁻⁵, n=150

- → 1~0.9925
- $\Delta E = 45 \text{ eV}@6 \text{keV}$ (maximum shift)

Degradation of energy resolution (overestimate)

$$\sqrt{(130^2 + 45^2)} = 137.6$$

Xenergy resolution of normal mode is assumed to be 130eV

Consider only photon statistics $\frac{1}{\sqrt{0.9925}} = 1.004$ times larger (under estimate)