Calibration for Follow-up X-ray Telescope on Einstein Probe

Chengkui Li 2019-05-22

Overview

- FXT introduction
- Simulation
- Ground calibration
- Calibration plan

Aim for EP/FXT

• EP:

A mission for all-sky monitoring to discover and study high energy transients and variability in the soft X-ray band

• FXT: responsible for the quick follow-up observation of the triggered sources by WXT and pointed observations of other targets.

More accurate positioning, better spectrum and lightcurve with wider energy band than WXT.

Performances and requirements of FXT

	Requirement	Goal
Field of View (FOV)	≥38' in diameter	≥38' in diameter
Effective Area	≥100cm ² @1.25keV, on axis	600 cm ² @1.25keV, on axis
Half Energy Width (HEW)	≤2′ HPD	30" HPD on axis
Energy Resultion (FWHM)	≤170 eV@1.25keV(Mg Kα)	≤120 eV@1.25keV(Mg Kα)
Energy Range	0.5~8.0 keV	0.3~10.0 keV
Source Position Error	≤20" in detector coordinate system 90% confidence, observation time more than 100 second and x-ray count more than 200	≤5" in J2000 system 68% confidence
Frame Rate	1 Hz	≥20Hz
Mass (TBC)	150kg	150kg
Power Consumption (TBC)	200W	200W
Outer Envelope Size	Ф630mm×2700mm	Ф630mm×2700mm
Nominal Lifetime	3 years	5 years

The model of EP-FXT

FXT is a Wolter-I type telescope operating in 0.5-8 keV. It has a narrow field of view and 20 arcsec source localization error in the detector coordinate system. The FXT detector system consists of two pnCCD modules (the size of the imaging area is $28.8 \text{mm} \times 28.8 \text{mm}$, provided by MPE) and a shifter.

One pnCCD module serves as the backup of the other module, and the two pnCCD modules are both cooled (-110^{-80} °C) by helium pulse tube refrigerators, respectively.

FXT structure

Simulation / Effective area

factors for effective area : filter, mirror, detector.

Simulation / Effective area

simulation / thermal deformation

Thermal deformation is difficult to corrected in orbit. It is a import factor affecting the angular resolution and position accuracy.

radial direction : 20±0.5°C Axial direction: 20±1°C

angular resolution : 18 " position accuracy: 4 "

MM

Mirror No.	Max deformation (μ m)	Spot shift (µm)	Angular resolution (")
L1	3. 5	100	12.5
L7	3. 8	100	12.5
L15	4.3	100	12.5
L25	5. 2	120	15
L35	6. 5	140	17.5
L45	8	150	18. 75

Simulation / off focal plane & off axis

Off focal plane: Z=±70mm , step : 10mm Off axis:2 degree step:0.05 degree

Simulation: stray light

Visible light transmission

$$N_{1} = \int_{200nm}^{2000nm} \tau_{1}Q_{in1}d\lambda = 0.043 \text{/} \text{/} \text{/}$$
$$N_{2} = \int_{200nm}^{2000nm} \tau_{2}Q_{in1}d\lambda = 2.3 \times 10^{-10} \text{/} \text{/} \text{/}$$
$$N_{3} = \int_{200nm}^{2000nm} \tau_{3}Q_{in1}d\lambda = 27 \text{/} \text{/} \text{/}$$

In condition 1&2, the reflected light from earth can be blocked by filter totally.

Ground calibration facility / test result of X-ray source

Ag, Mo, Cu, Fe, Cr, Ti, Al, Mg, Si 0_2 , C, 0.3-22keV.

Multitarget X-ray Spectrum

Ground calibration / test result for mirror

Calibration plan

• For the Mirrors:

the on-axis and off-axis PSF shapes and effective areas will be determined at energies ranging from 0.5 keV up to 10 keV.

- For pn CCD:
- a) Determine polynomial function relating channel to photon energy.
 determine event grade dependence
 ~10 reference points along the energy axis
- a) The energy resolution in the range 0.5 keV to 10 keV will be determined.
- b) The pile up effect.
- c) Split case.

Calibration plan

• For the Mirrors:

the on-axis and off-axis PSF shapes and effective areas will be determined at energies ranging from 0.5 keV up to 10 keV.

- For pn CCD:
- a) Determine polynomial function relating channel to photon energy.
 determine event grade dependence
 ~10 reference points along the energy axis
- a) The energy resolution in the range 0.5 keV to 10 keV will be determined.
- b) The pile up effect.
- c) Split case.

Thank you