

Calibration plans and developments of PFA onboard eXTP

WeiChun Jiang(IHEP) on behalf of the eXTP–PFA Consortium

14th Workshop of International Astronomical Consortium for High Energy Calibration Shonan Village Center, Japan, 19-23 May 2019

OUTLINE

Polarimetry Focusing Array(PFA) onboard eXTP

PFA : Wolter-I nickel mirrors + GPD

Polarimetry Focusing Array(PFA) onboard eXTP

What can PFA do:

• Imaging

• Polarimetry

Timing

• Spectrometry

Simulating results of the imaging polarization for the SN1006

Simulating results of the imaging polarization for crab

Instrument performance requirements

ltem	Requirement	Goal	
Energy range	2-8 keV	2-10 keV	
Effective area (for 4 PFAs)	380 cm2 @ 3 keV	420 cm2 @ 3 keV	
Field of view (FWHM)	8'×8'	8'×8'	
Angular resolution	30" (HPD)	15" (HPD)	
Point source localization	5" (1σ) (TBC)		
Energy resolution	1.8 keV @ 6 keV	1.5 keV @ 6 keV	
Modulation factor	≥50%@6keV	≥50%@6keV	
Time resolution	≤ 10 µs	≤ 8 µs	
Dead time	≤ 10% @ 1Crab	≤ 3% @ 1Crab	
Background	≤ 0.01 cts/s (TBC)	≤ 0.006 cts/s (TBC)	
MDP (minimum detectable polarization)	< 3%	< 2%	
Maximum source flux	≥ 15 Crab (TBC)	≥ 20 Crab	

Preliminary schedule of PFA

- Phase A+ (10 months): March Dec 2018
 - Key technology/components development (continue in B1)
 - Mission approval general review in China (May 2019)
- Phase B1 (12 months): Jan Dec 2019
 - Continue key technology/componets development
 - New version ASIC debugging and testing
 - P/L SRR,
 - Commitment MoU, Mission adoption
 - engineering prototype of PFA focal plane camera development
 - 50 μm Be window GPD reliability testing and flight test
- Phase B2 (12 months): Jan Dec 2020
 - SRR, PDR
- Phase C1 (12 months): Jan 2021 Dec 2022
 - SM, EFM and STM development and system level test
- Phase C2 (24 months): Jan 2023 Dec 2024
 - QM development and verification, CDR
- Phase D (30 months): Jan 2025 June 2027
 - FM delivery, S/C AIT
- Phase E1: Launch (6 months): June Dec 2027
- Phase E2/3 (60 + 60 months): Jan 2028 Jan 2038

Preliminary Design for PFA

Performance of Focusing Mirror Module

ltem	Requirement	Goal
Focal length	5.25 ± 0.05 m	5.25 ± 0.05 m
Aperture	≤ 500 mm	≤ 500 mm
Envelope	≤ 600 mm	≤ 600 mm
Mirror length	600 ± 1.0 mm	600 ± 0.5 mm
On axis collecting area	≥ 840 cm² @ 3 keV ≥ 550 cm² @ 6 keV	≥ 840 cm² @ 3 keV ≥ 550 cm² @ 6 keV
Energy range	2~8 keV	2~10 keV
Field of view (FWHM)	> 12'	> 12'
Angular resolution (HPD)	≤ 30″	≤ 15″
Charged particle deflection requirements	≥ 1° for proton@10keV or electron @100keV	≥ 1° for proton@10keV or electron @100keV
Working temperature	20 ± 1°C (TBC)	≤ 30″
Mass	≤ 100 kg	≤ 100 kg

Performance of Focal Plane Camera

ltem	Requirement	Goal	
Energy range	2-8 keV	2-10 keV	
Detection efficiency	≥ 11.5% @ 3 keV	≥ 14.0% @ 3 keV	
Detector Area (for 1 PFA)	$12 \times 12 \text{mm}^2$	$12 \times 12 \text{mm}^2$	
Position resolution	≤ 0.2 mm	≤ 0.1 mm	
Energy resolution	1.8 keV @ 6 keV	1.5 keV @ 6 keV	
Modulation factor	≥50%@6keV	≥50%@6keV	
Time resolution	≤ 10 µs	≤ 8 µs	
Dead time	≤ 500µs	≤ 100µs	
Background	≤ 0.01 cts/s (TBC)	≤ 0.006 cts/s (TBC)	
MDP (minimum detectable polarization)	< 3%	< 2%	

Calibration plans of PFA

desktop facility

8m facility

Chinese synchrotron light source

Cal source on wheel

Calibration plans of focal plane camera

Calibration at desktop facility and 8m facility :

- Modulation factor at different energies and different polarizations
- Residual modulation for unpolarized x-ray at different energies
- Energy response (2-10keV) and low energy threshold
- Energy resolution
- Time accuracy and time resolution
- Position resolution at different energies
- The effect of incidence inclination angle of x-ray
- The effect of electron on SDD&GPD
- Performance of background rejection with multi-cells

Calibration at Chinese synchrotron light source

- Cross calibraton of Modulation factor
- GPD QE measurement
- Transmission of kinds of filters

In orbit calibration plans

Calibration with in orbit calibration source:

- Modulation factor at different energies and different polarizations
- Residual modulation for unpolarized x-ray at different energies
- Energy response
- Energy resolution
- Gain map

Calibration with Astrophysics source:

- Cross calibration of absolute timing resolution
- Pointing resolution
- Point source localization

Preliminary Design of Filters wheel

- 1 or 2 polarized sources
 based on ⁵⁵Fe to provide Xray with different energies
 and polarizations;
- A Φ1mm unpolarized ⁵⁵Fe source to monitor the residual modulation ;
- A Φ18mm unpolarized ⁵⁵Fe covered with PVC film to map the gain for different positions of GPD_o

onboard polarized calibration X-ray source

- We can develop X ray polarized source based on the Bragg diffraction at nearly 45°
- The key components of the polarized source is the x ray source, the diffraction crystal and a optional collimator.
- We employ lead-glass capillary plates as the collimator for the current version.
- The ⁵⁵Fe source employed in the calibration source is sealed sources meeting the ISO2919 level C64343.

onboard polarized calibration X-ray source

 Reference to the design of INAF (Fabio Muleri et al), 4 polarized calibration Xray source was developed.

onboard polarized calibration X-ray source - source 1

- Fe⁵⁵+1.6µm Ag foil
- Crystal:HOPG (002)
- Diffraction angle:38.5°

	3.0 keV X-rays	5.9 keV X-rays			
Production	Fluorescence from Ag foil	Direct emission from ⁵⁵ Fe			
Diffraction angle on graphite crystal	$38.3 \deg$	$38.7 \deg$			
Polarization of diffracted photons	67%	69%			
Image on the detector	Strip, $4x15 \text{ mm}^2$	Strip, $4x15 \text{ mm}^2$			
Table 3. Characteristics of X-rays produced by Cal A.					

38.50

A-A 1:1

onboard polarized calibration X-ray source – source 2

Fe⁵⁵+100µm PVC transmission

B-B 1:1

Crystal:HOPG (002)

Table 1. Tuning between fluorescence lines and diffracting crystals. θ is the angle of diffraction and \mathcal{P} the polarization of diffracted photons. Data from calculation performed by Henke et al.⁷

Line Energy (keV)		Crystal	θ	$ \mathcal{P} $	
$L\alpha$ Molybdenum	2.293	Rhodium (001)	45°.36	0.9994	
Kα Chlorine	2.622	Graphite (002)	44°.82	0.9986	
$L\alpha$ Rhodium	2.691	Germanium (111)	44°.86	0.9926	
$K\alpha$ Calcium	3.692	Aluminum (111)	$45^{\circ}.88$	0.9938	
$K\alpha$ Titanium	4.511	Fluorite CaF_2 (220)	45°.37	0.9994	
${\rm K}\alpha$ Manganese	5.899	Lithium Floride (220)	47°.56	0.8822	

onboard polarized calibration X-ray source – source 3

- Fe⁵⁵+PVC reflection
- Crystal : HOPG (002)
- Diffraction angle:44.82°

Table 1. Tuning between fluorescence lines and diffracting crystals. θ is the angle of diffraction and \mathcal{P} the polarization of diffracted photons. Data from calculation performed by Henke et al.⁷

Line Energy (keV)		Crystal	θ	\mathcal{P}	
${\rm L}\alpha$ Molybdenum	2.293	Rhodium (001)	45°.36	0.9994	
$K\alpha$ Chlorine	2.622	Graphite (002)	44°.82	0.9986	
$L\alpha$ Rhodium	2.691	Germanium (111)	44°.86	0.9926	
${\rm K}\alpha$ Calcium	3.692	Aluminum (111)	$45^{\circ}.88$	0.9938	
$K\alpha$ Titanium	4.511	Fluorite CaF_2 (220)	$45^{\circ}.37$	0.9994	
${\rm K}\alpha$ Manganese	5.899	Lithium Floride (220)	47°.56	0.8822	

onboard polarized calibration X-ray source – source 4

- Fe⁵⁵ X ray source
- Crystal:LiF (220)

D-D 1:1

Diffraction angle:47.56°

Line	Energy (keV)	Crystal	θ	\mathcal{P}
$L\alpha$ Molybdenum	2.293	Rhodium (001)	$45^{\circ}.36$	0.9994
$K\alpha$ Chlorine	2.622	Graphite (002)	$44^{\circ}.82$	0.9986
$L\alpha$ Rhodium	2.691	Germanium (111)	$44^{\circ}.86$	0.9926
$K\alpha$ Calcium	3.692	Aluminum (111)	$45^{\circ}.88$	0.9938
$K\alpha$ Titanium	4.511	Fluorite CaF_2 (220)	$45^{\circ}.37$	0.9994
${\rm K}\alpha$ Manganese	5.899	Lithium Floride (220)	$47^{\circ}.56$	0.8822

onboard polarized calibration X-ray sources

Test of polarized calibration X-ray source

Energy spectroscopy of polarized calibration X-ray source

Peak number	Energy/keV	Area	FWHM/ eV	Cumulative counts	Cumulative time/h	Counting rate/h ⁻¹
1	2.63	4.30588	104.06	2997.04	60	50.04
2	5.92	13.64343	133.84	9411.05	15	627.4

Energy spectroscopy of polarized calibration X-ray source

Source 1

• Due to the very low count rate, we have not get the effective results of source 3.

What to do with the polarized source

• To increase the output intensity of the polarized source.

new version of the polarized source will be tested soon.

- PFA calibration flow and facility is talked.
- Ground calibration plans for focal plane camera is stated.
- In orbit calibration plans for PFA is considered.
- In orbit polarized calibration source is developed and need to be imporved.
- Thanks!