Calibration plans for WXT on Einstein Probe

Yuan Liu National Astronomical Observatories of China

Current status

- A small mission for all-sky monitoring to discover and study X-ray transients
- Approved in Dec 2017, fully funded in 2nd phase of the space science program of CAS
- July 4th, 2018: formal announcement by CAS
- Currently in Phase B (design phase)
- Oct 2019: start Phase C (qualification model)
- Expected launch: Dec 2022

Team and international collaboration

http://ep.bao.ac.cn

EP Payloads

- Wide-field X-ray Telescope (WXT):
 lobster-eye MPO + CMOS (12 modules)
 Follow-up X-ray Telescope (FXT):
 - Wolter-I + pnCCD (two modules)

Wide-field X-ray Telescope (WXT)

- X-ray optics: lobster-eye
 MPO (MPO plates China)
- Detector: large format, BI CMOS array (China)
- Eff. area: ~3 cm² @1keV
- FoV: ~4100 sqr. deg.
- FWHM: ~5 arcmin
- Bandpass: 0.5-4.0 keV
- Readout: 50 ms per frame
- Lead: SITP & NAOC (CAS)

Challenge: the largest-format detector for focusing X-ray telescopes ever built

Follow-up X-ray Telescope (FXT)

- X-ray optics: Wolter-I
- Detector: PN-CCD (MPE)
- Focal length: 1.6m
- Eff. area: >120cm² @1keV
- FWHM: < 2 arcmin</p>
 - 30" goal
- FoV: ~30 arcmin
- Bandpass: 0.3-10 keV
- Lead: IHEP (CAS)

Mission profile

- Orbit: ~600 km, i ~30 deg
- Observation modes
 - Survey: 3 pointings per orbit to the night-sky, each ~20 min exposure
 - ★ cover whole night sky in 3 orbits
 - * On-board trigger: FXT follow-up
 - * ToO
- On-board data reduction & transient search
- Alert data downlink/uplink
 - * Baseline: 'Beidou' system
 - backup: VHF network (French)
- Nominal lifetime: 3 +2 years

Performance of WXT: angular resolution

Zhao et al. 2014 SPIE (9144)

Measured PSF (NAOC) FWHM ~ 5 arcmin

Performance of WXT MPO: effective area

Effective area: simulated vs. measured

Zhao et al. 2014 SPIE (9144)

NNVT MPO plates is getting close to (80%) the theoretical value

 Complex distribution: fewer MPO chips at the edge, supporting structure

4 independent sub-modules

Eff. Area @ 1 keV

Simulated spectrum of Crab

- No dedicated calibration campaign
- Complete such task during the sky survey

Survey strategy

Survey strategy

The coverage shifts as the Earth's revolution (1 deg per day)

Tilt some pointing obs to map the entire FoV of WXT

Astrometric calibration

- Ideal focal plane (a sphere)
- CMOS (a plane)
- Ideal projection is easy
- Tilted, curved, distorted
- Need non-linear correction
- Common for optical telescope
- Fourth-order polynomial for ZTF (47 deg²)
- Much fewer (bright) sources in X-ray

Detector => tangential coordinates

$$\begin{split} \xi &= a_1 x + a_2 y + a_3 + a_4 x^2 + a_5 x y + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2 + a_{10} y^3 \\ &+ a_{11} m + a_{12} CI + \dots \\ \eta &= b_1 y + b_2 x + b_3 + b_4 y^2 + b_5 y x + b_6 x^2 + b_7 y^3 + b_8 y^2 x + b_9 y x^2 + b_{10} x^3 \\ &+ b_{11} m + b_{12} CI + \dots \end{split}$$

Astrometric calibration

- The requirement of WXT positional error is 1 arcmin (systematic)
- Swift/BAT adopts a distortion map (spline function)
- Monitor bright sources (>1 mCrab) during all sky survey
- No more than 10 sources in one pointing
- Low order poly or combine exposures

Summary

- The task of WXT is to 'discover' new transients
- The performance of WXT model is approaching the requirement (PSF, eff. area, energy resolution)
- The large FoV of WXT requires plenty of time to calibrate it
- "Calibrating in survey" is the natural and feasible way

http://ep.bao.ac.cn