XRISM Lab Astro Working group

• Current people: Tim Kallman (Chair, NASA GSFC), Jelle Kaastra (Vice-chair, SRON), Greg Brown (LLNL), Lia Corrales (U. Michigan), Elisa Costantini (SRON), Renata Cumbee (NASA GSFC), Megan Eckart (LLNL), Teru Enoto (Kyoto), Edmund Hodges-Kluck (NASA GSFC), Liyi Gu (Riken), Kazunori Ishibashi (Nagoya), Maurice Leutenegger (NASA GSFC), Michael Loewenstein (NASA GSFC), Shinya Nakashima (Riken), Scott Porter (NASA GSFC), Makoto Sawada (NASA GSFC), Randall Smith (SAO), Brian Williams (NASA GSFC), Tahir Yaqoob (NASA) **GSFC**)

Background

- Created to avoid problems similar to what happened with analysis of Hitomi Perseus spectrum
- Prepare for xrism by starting efforts to accumulate likely atomic data and modeling constants and tools before launch
- Start with the science in the hitomi white papers. Flow the science goals down to what atomic data or quantities are needed
- Determine the observation science driven accuracy we need from laboratory measurements or calculations, and compare to what's already been published or measured
- Estimate scope and size of the effort to fill the gaps, and prioritize the list

Requirements flowdown traceability matrix

Case #	Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approx imate energy (keV)	Specific line	Requireme on
Astro	-H White pa	aper + XRISM Science Team input	S								
1	l Galactic Center	Determine the fraction of diffuse Galactic center X-ray emission from gas and unresolved stellar sources	Thermal broadening	100 km/s	Collisional plasma	Fe XXV Ka line width	2.2 eV	Fe XXV Ka		resonance	emissivity
								Fe XXIV		DRsat	transition energy
								Fe XXIII	6.64	DRsat	transition energy
								Fe XXII	6.62	DRsat	transition energy
2	Galactic Center	Measure the scattering angle between the Sgr A*-Radio Arc and our line of sight to get accurate distances, and thus timing of light echoes. Two methods: (1) The low-energy cutoff of the Compton shoulder	Scattering angle	10 deg	MCRT	Low energy cutoff of Fe I Ka Compton shoulder	5 eV	Fe I (+near neutral) Ka	6.40		transition energy

Status of science traceability matrix development

- Mostly complete
- 81 science investigations
- >500 atomic data requirements flowing from science
- many overlaps, only ~ 150 distinct ones
 - 30 transition energies
 - 29 charge transfer
 - 4 absorption depth
 - 62 'emissivity'
 - 7 Fluorescence yield
 - 7 oscillator strength
 - ~few others: edge depths, rrc emissivity...
- We focus first on transition energies
- simpler to interpret than requirements on code quantities

Transition energies required vs. status

case	Торіс	Science Goal			spectrum quantity			E (keV)	Specific line	Require ment on	Required accuracy (eV)		Reference(s) for measurement
71	High-z chemical evolution	Measure the redshift and ejecta mass from a GRB progenitor		NH < ?? to >4 sigma	RRC Edge energy	100 eV	Fe XXVI RRC edge	9.28		transitio n energy	50	0.039	nist
32	Black Hole XRBs	Determine the collimation length scale of the SS433 jet (by measuring the radial velocity and widths of emission lines as a	Line-of- sight velocity	50 km/s	Fe XXV Ka, Kb, Fe XXVI	1 eV	Fe XXVI Kb	8.25		transitio n energy	0.5	0.039	nist
32	Black Hole XRBs	Determine the collimation length scale of the SS433 jet (by measuring the radial velocity and widths of emission lines as a	Line-of- sight velocity	50 km/s	Fe XXV Ka, Kb, Fe XXVI	1 eV	Fe XXV Kb	7.88		transitio n energy	-	7.800	<u>nist</u>
5	Galactic Center	Measure the rotation curve/dynamics of hot gas near Sgr A* (is it outflowing?)	Line-of- sight velocity	50 km/s	Fe XXVI Ka, Fe XXV Ka	1 eV	Fe XXVI Ka	6.96		transitio n energy	0.5	0.039	nist
12	Active and Massive	Measure the velocity of coronal plasma during flares to test chromospheric evaporation theory	Line-of- sight velocity	50 km/s	Fe XXV Ka centroid	1 eV	Fe XXV Ka	6.7	resonanc e	transitio n energy		0.335	<u>1989PhRvA40150B</u>
53	Clusters	Map velocity fields in clusters to measure turbulence, identify sloshing motion, etc.	Velocity dispersio n	50 km/s	Line width in Fe XXV	1 eV	Fe XXIV	6.65	Inner- shell satellites	transitio n energy		1.330	<u>1993ApJ409846B</u>
42	Young SNR	Determine how shock energy is turned into cosmic rays by measuring the energy	Shock thermaliz	0.2	Line ratios	0.1	Fe XXIII	6.64	Inner- shell	transitio n energy		1.500	1986ApJ304838S

Transition energies required vs. status

42	SNR	into cosmic rays by measuring the energy	Shock thermaliz ation	0.2	Line ratios among	0.1	Fe XXIII	6.64	Inner- shell satellites	transitio n energy		1.500	1986ApJ304838S
42	SNR	into cosmic rays by measuring the energy	Shock thermaliz ation	0.2	Line ratios among	0.1	Fe XXII	6.62	Inner- shell satellites	transitio n energy		1.500	01986ApJ304838S
4	Center	Measure the rotation curve of molecular clouds near Sgr A* from X-ray light echoes and compare to sub-mm data		25 km/s	Fe I Ka Doppler shift	0.5 eV	Fe I (+near neutral)	6.4		transitio n energy		6.700	2003A&A410359P
63	CGM		Line-of- sight velocity	50 km/s	Ar XVII (1.34 keV), Ca	1 eV	Ca XIX	3.9		transitio n energy	-	0.036	2015JPhB48n4013R
78	Exchange	Determine the contribution of CX in clusters (also as a background to the possible 3.5 keV DM line)	??	??	S XVI high-n transition	2-3 eV	CI XVII	3.51		transitio n energy	-	8.000	<u>1965JOSA55654G</u>
78	Exchange	Determine the contribution of CX in clusters (also as a background to the possible 3.5 keV DM line)	??	??	S XVI high-n transition		Ar XVII	3.5	Inner- shell satellites	transitio n energy	-	0.002	1995PhRvE52.1980B
22	LMXBs	Determine M/R in Ser X-1 and T5X2 (J17480-2446) from gravitational redshift of Fe K lines from equatorial belt [lower	M/R	0.02	Fe XXV, Fe XXVI, Ar XVII,	>300 km/s [??]	Ar XVII	3.13	resonanc e	transitio n energy		0.000	nist
39		Detect odd-Z trace elements to measure abundances, charge states and compare	A/H	0.1	Line strengths	0.05	CI XVI	2.79		transitio n energy		5.800	Can. J. Phys. 66, 586 (1988).

Accuracies of K lines and L lines with E> 1 keV

Categories of atomic data requirements

- Line energies
- Oscillator strengths \rightarrow calculated to ~0.01 0.1
- Fluorescence yields → measured neutral ~0.01, calculated ~0.1
- Edge depths \rightarrow calculated, ~0.01
- 'Emissivities' requires modeling to determine most relevant atomic quantities

Required accuracy vs what is available for line energies

Required accuracy vs what is available for line energies

Report on charge transfer

- Document prepared by Renata Cumbee and Maurice Leutenegger
- Charge transfer is least 'mature' lab astro topic
 - Processes of interest have ~low energy interaction
 - Likely Involve atomic target
 - ~Few relevant experiments have been done
 - Large scale calculations rely on approximations -> neglect of j
- Identifies key categories of science goals affected by charge transfer
 - Cx as foreground
 - Cx in planets
 - (possible) cx in distant source
- Describes strategy for experiments designed to provide reliable cross sections
 - Start with H target + bare ion, or H-like
 - Observe radiation
 - Benchmark calculations
 - Multielectron targets require apparatus to separate multi-electron events
 - APRA program is under way

Next steps

- Study emissivities: what atomic quantities matter most?
- -Understand whether there's something lacking in the way the laboratory measurements are distributed; propose a solution if need be.
- -Check consistency between spectral models to identify problem areas before launch.
- -Follow up and possibly expand on The Lorentz Test Suite.
- -Compare and consult with work for other applications, eg. fusion.
- -Think about how software (like XSPEC) could and should take into account uncertainties on atomic models and measurements.
- -Discuss avenues for obtaining funding for this work.
- Campaign to simulate all Hitomi PV phase observations and highlight atomic data sensitivity? → invest in better testing capabilities for perturbing atomic data?? Requires money..
- Generate documents (white papers...) to get involvement from the broader lab astro community