Chandra ACIS Background Modeling

Terrance J. Gaetz

Chandra X-ray Center/Smithsonian Astrophysical Observatory

IACHEC 2019

T. Gaetz (CXC/SAO)

Chandra ACIS Background

IACHEC 2019 1/13

The aim:

templates for ACIS (TE-mode) detector background modeling)

Detector background:

- particle-induced:
 - continuum (particle charge clouds)
 - fluorescent lines (structure in detector FOV)
 - framestore fluorescent lines (framestore cover: Al + Au)
- Four basic combinations:
 - FI vs. BI chip
 - VFAINT **vs.** FAINT **mode**

Background Features (ACIS "stowed")

- particle-induced background (continuum)
- fluorescent lines (+ framestore lines)

Background Features (ACIS "stowed")

- particle-induced background (continuum)
- fluorescent lines (+ framestore lines)

Background Spatial/Spectral Variation (ACIS "stowed") FI Chips – 10, 12, 13 (no VF cleaning)

T. Gaetz (CXC/SAO)

200

Background Spatial/Spectral Variation (ACIS "stowed") FI Chips – I0, I2, I3 (with VF cleaning)

T. Gaetz (CXC/SAO)

A 1

200

Background Spatial/Spectral Variation (ACIS "stowed") BI Chip – S3 (with VF cleaning)

200

Not processed by X-ray optics

- particle-induced background (continuum)
 - not real X-rays
 - regular RMF? diagonal RMF?
 no ARF
- fluorescent lines (detector FOV)
 - should be with RMF, detector-only ARF (QE, OBF)
- fluorescent lines (framestore)
 - bypass OBF
 - with RMF, should be detector-only ARF (QE), no OBF
 - Currently: no way to "turn off" OBF in ARF

See also:

- Bartalucci et al. 2014, A&A 566, A25
 - "Chandra ACIS-I particle background: an analytical model"
- ACIS-I only, VFAINT filtered only

My approach:

- Aim for physics-based lines where possible.
- Extend to FAINT mode data
- Extend to S3 FAINT mode and VFAINT filtered data

Physically Expected Line Complexes

Al	Al K α	1.48656	+ framestore line
	Al K β	1.55745	+ framestore line
Si	Si K α	1.73978	
AI	Au M α_2	2.118	+ framestore line
	Au M α_1	2.1229	+ framestore line
	Au M β	2.205	+ framestore line
	Au M γ	2.410	+ framestore line
Ni	Ni K α_1	7.4609	
	Ni K α_2	7.4782	
Ni	Ni Kβ _{1,3}	8.2647	
Au	Au L1	8.4939	+ framestore line
Au	Au L α_1	9.7133	+ framestore line
	Au L α_2	9.6280	+ framestore line
Au	Au L β_2	11.5847	+ framestore line
	Au L β_2	11.4423	+ framestore line

T. Gaetz (CXC/SAO)

イロト イポト イヨト イヨト

Group Physically Expected Lines

- Group the Au M lines; tie norms and widths to Au Mα₂
- Group Au L α_1 and Au L α_1 ; tie norm and width to Au L α_1
- Au lines have direct and frame store components
 - CTI correction overcorrects
 - (assumes event is actually in imaging array)
 - Frame store component depends on chipy (roughly linear)
- "framestore" version: group as above
 - grouping lines makes modeling framestore component easier
 - allow the Au M α_2 and Au L α_1 energy to vary
 - allow line width of Au $M\alpha_2$ and Au $L\alpha_1$ to vary compensates for variation with chipy
- In principle, Au Lβ₂ and Au Lβ₁; however, RMF energies don't extend high enough to their framestore lines.
- Also group Al K α , Al K β ; framestore lines

• • • • • • • •

Spectral extractions:

- spectra extracted in four broad regions:
 - chipx: 1:1024
 - chipy: 1:256, 247:512, 513:768, 769:1024
- merge I0+I2+I3 data
- periods D+E+F ACIS-stowed data; ~ 1Ms
- For now, RMF only, no ARF

Particle continuum:

- shallow <code>powerlaw</code> (index \sim 0.08)
- Iow-energy peak: exp model

Fluorescent lines.

- groups of FOV lines: gaussian lines
- groups of framestore lines:
 - single line of a group can vary
 - energies of the rest scaled as for the FOV line group
 - line widths tied to reference line width width allowed to vary (large range of chipy)

Background Spatial/Spectral Variation (ACIS "stowed") VF cleaned

Background Spatial/Spectral Variation (ACIS "stowed") VF cleaned

T. Gaetz (CXC/SAO)

Chandra ACIS Background

IACHEC 2019 12/13

Background Spatial/Spectral Variation (ACIS "stowed")

Period D,E,F: ACIS-023: Achipy 513_768

T. Gaetz (CXC/SAO)

Chandra ACIS Background

IACHEC 2019 12/13

Background Spatial/Spectral Variation (ACIS "stowed") VF cleaned

ACIS-stowed FI data, VF filtered

progress in modeling with physical line energies

More to do:

- I chips
 - no VF filtering case
 - Δchipy=256, background vs. node
 - Δchipy=128
 - as above, individual chips
- ACIS-S3
 - VF filtered, and non-VF filtered