<u>iachec-calstat@cfa.harvard.edu</u> Working Group IV.2 CalStat

8:30 — Guillaume Belanger

The most sensitive period search we can do on event data Treating detection of transient phenomena as a statistical problem 9:00 — Vinay Kashyap

Flux measurement from high-resolution spectra

9:10 — Discussion: A Practical Guide to Data Analysis

9:25 — Discussion: modeling backgrounds

9:30 — Herman Marshall

Concordance

IACHEC 2019 May 22 : WG IV. 2

Flux Measurement from High-Resolution Spectra

Vinay Kashyap CXC/CfA *IACHEC 2019 May 22 : WG IV. 2*

From Photons to Flux

Vinay Kashyap CXC/CfA

If you add up the fluxes for all photons

- The obvious thing
 - * Compute erg/cm² for each bin, add them up, divide by exposure time.
 - Works fine!
- * But what if you have background? Observed counts are a mixture of true source events and background events (and you don't know which is which)
 - * Again do the obvious thing estimate what fraction of each count could be background and remove that fraction before estimating the flux
 - * Does not work!

If you add up the fluxes

Dealing with background

- * How about if we can figure out the probability that a given photon is from the background?
 - use Monte Carlo to randomly generate background events and superpose on observed spectrum
 - * pick off the nearest event as background
 - repeat 100s of times, keep track of how many times a given observed count gets flagged — the more often, the higher the probability that it is a background event

example

Dealing with background

tl;dl

- If you add up photon energies when you know the energies accurately, background contamination will cause a large bias.
- * There may be several mitigating strategies, but one that does work is to do Monte Carlo sampling based on assigned/computed probability that a given event comes from the background.

IACHEC 2019 May 22 : WG IV. 2

A Practical Guide to Analysis

Vinay Kashyap CXC/CfA

Action item from IACHEC 2018

Write a practical guide to best practices in X-ray analysis

Need co-authors!

And feedback!

A straw man ToC

1. What is this about

- 1. An opinionated document
- 2. listing things useful to cal scientists, and only things useful to cal scientists
- 2. Jargon and notation
 - 1. a dictionary of stats terms
- 3. On error bars
 - 1. there is a zoo of them (frequentist vs Bayesian, 1σ vs 90%, equal-tail vs highest posterior density)
 - 2. how to propagate, when propagation doesn't work
- 4. Sampling
 - 1. about pseudorandom numbers
 - 2. Distributions (are not functions)
 - 3. Monte Carlo and Bootstrap (types, what to be careful about)
 - 4. Tips and tricks

A straw man ToC (contd.)

- 5. Likelihood and Probability
 - 1. Conditional probability, Bayes' Theorem
- 6. Model Fitting
 - 1. Models, parameters, estimates, uncertainty intervals
 - 2. Non-parametric analysis (Kernel-density estimates, smoothing, histograms, Bayesian Blocks)
 - 3. log-Likelihood, chisq, Cash/cstat, Wstat compare and contrast
 - 4. optimization techniques, MCMC
- 7. p-values and Hypothesis Tests
 - 1. What does a p-value mean and what it doesn't mean
 - 2. K-S test, F-test, Bayes Factors
 - 3. Examples: source detection
- 8. New Directions
 - 1. ML (Neural Networks, Gaussian Processes)

<u>iachec-calstat@cfa.harvard.edu</u> Working Group IV.2 CalStat

8:30 — Guillaume Belanger

The most sensitive period search we can do on event data Treating detection of transient phenomena as a statistical problem 9:00 — Vinay Kashyap

Flux measurement from high-resolution spectra

9:10 — Discussion: A Practical Guide to Data Analysis

9:25 — Discussion: modeling backgrounds

9:30 — Herman Marshall

Concordance