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This talk was presented on Wednesday May 30, 2019, at the 14th
workshop of the IACHEC held from May 19 to 23 in Shonan Village,
Japan. The subject is that of period searches on event data, and intro-
duces two new sensitive periodogram statistics that can be used for
this purpose: R2

k—the generalised modified Rayleigh statistic, and
Z2—the modified Z2 statistic. In addition to being the periodogram
of choice for weak periodic signals, we show that the R2

k can be used
for highly refined pulse profile analysis. The details are presented in
Belanger [2016].

Contents

A first look at the data 2

Periodogram analysis 3

Fast Fourier Transform periodogram 3

The Rayleigh periodogram 4

The modified Rayleigh periodogram 5

The new R2
k and Z2 periodograms 5

Harmonic decomposition of peaked pulse profiles 5

Closing remarks 6



the most sensitive period search we can do on event data 2

A first look at the data

You have a data set made up of a collection of discretely detected
events, each with a precisely measured time of arrival. These can
be ultra high energy neutrinos, they can be X-rays from a blazar,
or they can be cars driving over a pressure-sensitive line set on the
ground across a street of a busy intersection downtown Tokyo. You
are interested in how these events are distributed in time. What can
you do with these measurements?

First, you’d probably want to look at them on a timeline just to
get a general feeling of what they look like. So you make a time
series by grouping the events in time bins that are wide enough
to reveal the underlying structure , but not too wide as to hide
potentially interesting features. And the time series could look
something like this:
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Figure 1: White noise time series with
total duration of 10 ks binned on 512

time bins (δt=19.531 s).

There’s something else we could—and should—look at right
away, and that’s the distribution of waiting times (interarrival
times). This will immediately tell us if there’s something odd, like
some kind of regular dead time that would imprint a structure that
isn’t inherit to the data. We just measure the time between each
event and draw up their distribution as shown in Figure 2.
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Figure 2: Distribution of waiting or
inter-arrival times between events of
which there are a total of 5063, and
although the distribution is shown
up to 11, the longest waiting time is
longer than 20 seconds. Such is the
nature of the exponential distribution.

This shows us that there doesn’t seem to be anything that is out
of place, and that the waiting times are distributed as expected
following a roughly exponential distribution, with a slightly wider
tail due to the variability; this distribution is a pure exponential
only for homogeneous Poisson processes—white noise of constant
mean rate.

It is important to check this carefully because any kind of mea-
surement effects that impose a temporal structure onto the data
need to be identified in order to be taken into account when we
treat and analyse the data we have collected.

Now that we have checked this, and found that things look gen-
erally good, we can move forward. And one of the most effective
ways to look carefully at the details of the distribution in time of a
collection of measurements is to make a periodogram.
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Periodogram analysis

A periodogram decomposes the time-domain signal into a
frequency-domain signal. Each of the frequencies that are accessi-
ble in the data can be tested for periodicity in the arrival times of
events. So if there is any kind of temporal structure in these data
we will see it as an excess of power at the one or several frequencies
carrying information about this structure. And this is where we get
to the essence of this talk: how can we access as much information
as possible with the periodogram statistic we are using.

There are three things we need from a powerful and reliable pe-
riodogram statistic: it must (1) be able to use each event’s arrival
time in order to access all variability timescales, (2) allow for over-
sampling in order to explore frequency space without restrictions,
and (3) take into account the oscillation in the mean, variance, and
covariance of the Fourier components as a function of frequency.
Let me explain what this means.

Fast Fourier Transform periodogram

The most well know and commonly used periodogram is made
using the fast Fourier transform (FFT). To run the FFT, the time
series of events must be binned (in bins of equal size), and the bin
time (or number of bins), determines the maximum frequency that
can be tested; it’s called the Nyquist frequency, and it is given by
νN = 1/2δt, where δt is the bin time.1 The lowest frequency that 1 It is important to highlight that

the corresponding limit for arrival
times would be defined based on the
shortest of the waiting time between
two events in the list.

can be tested is always determined by the length of the time series,
as we obviously cannot test a period that is longer than that; so,
νmin = 1/T. Here is the FFT periodogram of the time series of
Figure 1:
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Figure 3: The FFT periodogram com-
puted on 512 time bins (δt=19.531 s)
and thus 256 real frequencies
with νmin = δ f = 10−4 Hz and
νmax = 0.0256 Hz.

Each of the frequencies that were tested are called independent
Fourier frequencies because they are an integer multiple of 1/T.
The step size between independent frequencies is 1/T. But aren’t
there an infinite number of frequencies between any two of these
independent frequencies? Is there no way to test for those? What if
the periodic signal happen to fall exactly between two independent
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frequencies? We need to be able to oversample which means to test
frequencies that cover the space between independent frequencies.

The Rayleigh periodogram

This we can do easily with an event data periodogram like the clas-
sic Rayleigh statistic [Leahy et al., 1983] that will, if we oversample
finely enough, reveal peaks that could have been missed with the
standard FFT periodogram.2 As is obviously the case here:

2 From a data set comprising N events,
the Rayleigh power at a given fre-
quency ν (or period P), is calculated
by converting each arrival time, ti , to a
phase, φi , given by the fractional part
of 2πtiν (or 2πti/P), and computing

R2 =
2
N

( N

∑
i=1

cos φi

)2

+

(
N

∑
i=1

sin φi

)2
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Figure 4: Comparison of the FFT and
R2 statistic on simulated data that
are of white noise (duration T = 10 ks,
mean rate µ = 0.5 s−1), with a 10%
pulsed fraction (1 of 10 events is mod-
ulated) for a sinusoid at 0.00405 Hz
(≈ 247 s). The Rayleigh periodogram
in red is around ±1 IFS of the peak
(0.003–0.005 Hz), with sampling of 21

frequencies per IFS. Panel (a) shows
the full range, and panel (b) shows
the range of the R2 periodogram. This
example with a period between two
independent frequencies was picked to
clearly illustrate the important differ-
ence in sensitivity that can be achieved
in some cases.And it is immensely clear that this periododic signal which is to-

tally obvious in the Rayleigh periodogram, was simply not present
in the FFT. And the reason for that is just that it happened to be
precisely between two independent frequencies. Moreover, as you
can see, the Rayleigh periodogram permits us to test any frequency
over any arbitrary range of frequencies. But what if it was com-
puted for the entire frequency range?
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Figure 5: Artifacts in the R2 peri-
odogram shown on a truncated linear
scale, visibly growing in a power-law
fashion toward lower frequencies, with
R2 estimates between independent fre-
quencies deviating noticeably from the
FFT estimates below ≈ 3× 10−3 Hz.

All this stuff that you see at low frequencies is statistical noise.
It’s not real. What I mean by that is that the statistical noise, these
huge peaks of power in the periodogram, are artefacts that arise
from treating all frequencies as if they were independent frequen-
cies even though they are not.
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The modified Rayleigh periodogram

The good news is that once we’ve understood that, we can include
the appropriate correction in the calculation of power analytically
right in the equations used to compute the periodogram. And this
is what we get when we do:
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Figure 6: The R2
1 statistic applied to

the same data, with the periodic signal
clearly detected at the same frequency
(0.004052 Hz) but at a somewhat
lower power from the more accurate
calculation (33.1 instead of 42.8, and a
probability of 10−8 instead of 10−10 of
arising from a noise fluctuation).

What we see if we look carefully, is that the estimates of power
in this modified Rayleigh periodogram agree with the FFT at the
independent frequencies, that it clearly detects the periodic signal
just like the R2 does, and that it doesn’t suffer from the fake power
peaks at low frequencies that completely disqualifies the R2 peri-
odogram from being able to make any statement about what could
be happening in this region of frequency space. Let’s go one step
further.

The new R2
k and Z2 periodograms

What if we are not looking for a weak or sinusoidal signal? What if
we’re trying to characterise a signal whose pulse profile is skewed
or highly peaked, like it is for the Crab pulsar? This is why the Z2

test [Buccheri et al., 1983] was devised: to sum the power of higher
harmonics beyond just the fundamental. The Z2 test sums over
several R2 periodograms for different harmonics. But obviously,
this means that it will suffer not only in the same way as the R2

does, but much more, because the artefacts will be combined with
each additional harmonic that is used in the sum.

The solution is a generalised modified Rayleigh statistic:3

3 The dependency on the harmonic
is carried by the variable k in the
argument of the sine and cosine
functions. The terms Ck and Sk are
defined as:

Ck =
1
N

N

∑
i=1

cos kφi and Sk =
1
N

N

∑
i=1

sin kφi ,

and the other terms are given by

〈Ck〉=
1

kωT
[sin kωt]t2

t1
,

〈Sk〉=
−1

kωT
[cos kωt]t2

t1
,

σ2
Ck
=

1
2N

(
1+

1
kωT

[sin kωt cos kωt]t2
t1

)
−〈Ck〉2,

σ2
Sk
=

1
2N

(
1− 1

kωT
[sin kωt cos kωt]t2

t1

)
−〈Sk〉2,

σCkSk =
1

2kωTN

[
sin2 kωt

]t2

t1
− 〈Ck〉〈Sk〉.

The terms 〈Ck〉 and 〈Sk〉 are the
expectation values, σ2

Ck
and σ2

Sk
are the

variances, and σCkSk is the covariance
of Ck and Sk .

R2
k =

(
Ck − 〈Ck〉
Sk − 〈Sk〉

)T(
σ2

Ck σCkSk

σCkSk σ2
Sk

)−1(
Ck − 〈Ck〉
Sk − 〈Sk〉

)
(1)

that can be used to construct a modified Z2 statistic, Z2, as:

Z2 = ∑R2
k . (2)

Harmonic decomposition of peaked pulse profiles

Equipped with these, we can do something like this: We can com-
pute the power contained in the Crab’s pulse at different harmonics
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using the R2
k statistic. When we do this, we find that most of the

power comes from the second, third, and fifth harmonics, but that
there’s hardly any power in the fourth, and that there’s actually
more power in the third and fifth than in the fundamental.

It’s very interesting. And we simply would never be able to
know this without the help of such a periodogram statistic. But
the most critical point is that because the power is computed cor-
rectly at every frequency, we can trust the result to be accurate and
reliable. Isn’t this always the most important? What’s the point of
getting any result at all if it’s not reliable and accurate. Here’s what
this looks like graphically:
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f=29.70323496 Hz
P=33.66636668 ms

T=19002 s, E=[0.55:12.0] keV, N=2823390
pulsed fraction=0.10002922

Figure 7: Multi-harmonic periodogram
of the Crab pulsar’s X-ray emission
centered on the pulse frequency in
Panel (a) and phasograms resulting
from folding the arrival times on our
best estimate of the pulse frequency
compared to the frequency derived
from the radio ephemerides in Panel
(b). The data is from an XMM-Newton
observation (ID 0611181501-003 on
2012 February 24–25) with an elapsed
time of 19,002 s, using the Epic PN
Timing/FastBurst data comprising
2823390 events in the range 0.55–12.0
keV (mean rate 148.6 s−1).

Closing remarks

We will close on this, and just leave you with the following
concluding remarks:

• Event data are quantitatively different from a collection of mea-
surements in which there is an inherent binning due to the mea-
surement process or the quantity being measured. It carries
temporal information.

• To extract as much as we can from this temporal information
the events carry we need to use powerful and reliable tools, that
include periodogram statistics.

• A powerful and reliable periodogram statistic must be able to
use each event’s arrival time in order to access all variability
timescales; allow for oversampling in order to explore frequency
space without restrictions; and correct for the testing of non-
independent frequencies.

• In light of this, the periodogram statistics of choice are the new
generalised modified Rayleigh R2

k statistic and the Z2 test de-
rived from it.

You can find more details on this in Belanger [2016]. Thank you for
listening.
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