

Direct mass measurements of ⁵⁵⁻⁵⁷Ca

Shin'ichiro Michimasa

Center for Nuclear Study, Univ. of Tokyo

Phys. Rev. Lett. **121**, 022506 (2018).

Collaborators

CNS, University of Tokyo

S.Michimasa, M. Kobayashi, Y. Kiyokawa, S. Ota, M. Dozono, S. Kawase, K. Kisamori, Y. Kubota, C.S. Lee, M. Matsushita, H. Miya, S. Shimoura, M. Takaki, H. Tokieda, K. Yako, R. Yokoyama

RIKEN Nishina Center

H. Baba, N. Fukuda, N. Inabe, T. Kubo, H. Sakai, H. Suzuki, H. Takeda, S. Takeuchi, T. Uesaka, Y. Yanagisawa, K. Yoshida

Tokyo University of Science A. Mizukami, D. Nishimura,

Rikkyo University K. Kobayashi, H. Nagakura, Y. Yamaguchi

RCNP, Osaka Univ. E. Ideguchi

Kyoto University

T. Furuno,

T. Kawabata

Univ. of Notre Dame G.P.A. Berg

Contents

- Introduction
 - Motivation of mass measurement
- Experimental method (in detail)
- Result and Discussion
 - $\ensuremath{\boxdot}$ Evolutions of S_{2n} and n shell gap in n-rich Ca

– Summary

NS

Nuclear mass & shell evolution

- Nuclear mass reflects the sum of all interactions within atomic nucleus
 - Nuclear mass measurements provide fundamental information on nuclear stability

- Shell evolution can be probed by mass measurements
- Mass differences are employed as a signature for the presence of a shell gap
- Changes in the shell structure in <u>nuclei far from stability</u> ("shell evolution") have been intensively investigated
 - Some of the traditional magic numbers disappear, while other new ones arise

e.g. Two-neutron separation energy

$$S_{2n}(Z, N) = B(Z, N) - B(Z, N-2)$$

New magic numbers N = 32, 34

<u>N = 32 and 34 are candidates of new magic numbers in Ca isotopes</u>

- Wienholtz et al. Nature 498, 349 (2013)
 - Mass of ⁵⁴Ca was measured by the Penning ion-trap method
 - Steep decrease in S_{2n} from ⁵²Ca to ⁵⁴Ca
 - Established prominent shell closure at N = 32
- Steppenbeck et al. Nature 502, 207 (2013)
 - Ex(2⁺₁) in ⁵⁴Ca was measured
 - Suggested the existence of an N = 34 shell closure in ⁵⁴Ca
 - $Ex(2_1^+)$ in ⁵⁴Ca was found to be ~500 keV below that in ⁵²Ca

A critical evidence on the shell closure at N = 34 \rightarrow Masses beyond N = 34 (55Ca, 56Ca, ...)

<u>This work</u>

Study the nuclear shell evolution at N = 34

by direct mass measurements of neutron-rich Ca nuclei beyond 54Ca

Techniques of direct mass measurements

Technique		Accessible half-life	Typical Mass precision (δm/m)
Frequency-based mass spectrometry			
	Penning trap	a few 100 ms	10 ⁻⁷
	Storage ring (Schottky)	10 SEC	5×10 ⁻⁷
TOF mass spectrometry			
	ΤΟF-Βρ	1 µs	10 ⁻⁵
	Storage ring (Isochronous)	a few 10 µs	5×10 ⁻⁶
	MR-TOF	a few 10 ms	10 ⁻⁷

TOF-Bp technique
$$\frac{m}{q} = \frac{B\rho}{\gamma L/\pi}$$

- can access the short-lived nuclei very far from stability
 - but moderate mass precisions
- can provide masses of a large number of isotopes in a <u>single</u> measurement
 - allows us to map a wide region of the nuclear mass surface

RIBF facility

RIBF was equipped with 3 spectrometers for RI beams:

Experimental setup

Time resolution of Diamond detector

Diamond

Fast response \rightarrow very good timing resolution!

Specification:

- Developed by CNS-MSU collaboration
- Polycrystalline CVD diamond
- Crystal size : 30 × 30 × 0.2 mm³
- Pad design
 - Effective area: 28 × 28 mm²
 - Side A: 1 pad (4 readouts)
 - Side B: 4 strips (8 readouts)
 - for correction of position dependence

 \bigcirc Time resolution incl. DAQ system ~10ps(σ) ⇒ Intrinsic resolution : **5 ps(σ)** @Δ**E**=100MeV

Particle identification

• Total yield of 55Ca: ~3000

- Many species of reference nuclei over a broad range of *A* and *Z* are observed.
 - These nuclei are used in the mass calibration.
- Nuclei whose masses have not been measured:

Z	Nuclei (Yield > 1000)
17	⁴⁷ Cl, ⁴⁸ Cl
18	⁵⁰ Ar
19	
20	⁵⁵ Ca
21	⁵⁸ Sc, ⁵⁹ Sc
22	⁵⁸ Ti, ⁵⁹ Ti, ⁶⁰ Ti
23	⁶ 2V, ⁶ 3V

Masses of these nuclei will be determined with the precision of several hundreds keV

Gamma-ray detectors for PID

Property of Secondary Beam

⇒ Properties of those isomers are open questions.
 Those isomers will be connect to nuclear structure at N=40.
 We expect theory can help us...

Ion Optical Corrections

Ion Optical Corrections

© We found 3 important corrections through the analysis

- 1. Higher order correction and Effect of scattering at S0 PPAC.
- 2. Stability of ion optical parameters (magnet setting)
- 3. Atomic number dependence to mass shift

Ion Optical Correction (1)

$$\begin{aligned} & \oint \text{determine} \\ \frac{1}{q} = f(t, \mathbf{x}) = \sum_{j_0 + \dots + j_9 \le 4} \overline{C_{(j_0, \dots, j_9)}} \cdot \tilde{t}^{j_0} x_3^{j_1} a_3^{j_2} y_3^{j_3} b_3^{j_4} \tilde{x}_0^{j_5} x_2^{j_6} \tilde{a}_2^{j_7} \tilde{y}_2^{j_8} b_2^{j_9} \\ \chi^2 = \sum_{i=1}^{N_{\text{event}}} \frac{\left[(m/q)_{\text{ref}}^{(i)} - f(t_0^{(i)}, \mathbf{x}^{(i)}) \right]^2}{(\sigma_{\text{ref}}^{(i)})^2 + (\sigma_{\text{stat}}^{(i)})^2 + \sigma_{\text{syst}}^2}, \quad \rightarrow \text{minimization} \end{aligned}$$

How do we need of higher order correction?

★ Measurement
 of scattering at S0 PPAC
 is critical for mass resolution.

★ Higher order correction seems better but the number of fitting coefficients easily increases.

1. Statistical error

- Mass resolution of 10500 (σ) has been achieved for Ca isotopes
 - ${}^{55}Ca: \sigma(stat) = 90 \text{ keV}$ (3000 events)
 - $5^{6}Ca: \sigma(stat) = 200 \text{ keV}$ (600 events)
 - 57Ca: $\sigma(stat) = 980 \text{ keV}$ (30 events)

2. Systematic error

- Achieved masses resolution: $\sigma(mass) \sim 150 \text{ keV for } 55\text{Ca}$
 - ~ 250 keV for ⁵⁶Ca
 - ~ 990keV for ⁵⁷Ca

Newly determined mass excesses

Nucleus	Present (keV)	AME2016 (keV)
⁵⁷ Ca	-7370(990)	
⁵⁶ Ca	-13510(250)	
⁵⁵ Ca	-18650(160)	
⁴⁸ Ar	-22330(120)	-22280(310)
⁴⁶ C1	-13700(110)	-13860(210)
⁴⁴ Cl	-20540(110)	-20380(140)
⁴² P	+1100(100)	+1010(310)
⁴⁰ P	-8150(100)	-8110(150)
⁴⁰ Si	+5700(130)	+5430(350)

 $S_{2n} = -M(A, Z) + M(A - 2, Z) + 2M_n$

Neutron shell gap

Estimation of Shell gap from S_{2n} .

- 1. Empirical Shell gap [1] $\Delta_{2n}(N) = S_{2n}(N) - S_{2n}(N+2)$
- 2. Shell gap from Δ_3 indicators [2] $\delta e(N) = S_{2n}(N) - S_{2n}(N+1)$

We use δe indicator in discussion:
★ Taking into account neutron paring effect.
★ Can discuss more neutron-rich nuclei

[1] D. Lunney et al., Rev. Mod. Phys. **75** 1021 (2003).
[2] W. Satula et al., Phys. Rev. Lett. **81**, 3599 (1998).

 $S_{2n} = -M(A, Z) + M(A - 2, Z) + 2M_n$

 $S_{2n} = -M(A, Z) + M(A - 2, Z) + 2M_n$

Trend along the neutron number

The δe shell gap in ⁵⁴Ca is similar value to that in ⁵²Ca but smaller than ⁴⁸Ca, and then it has a property of shell closure.

The δe in ^{56}Ca is weaker than ^{54}Ca and similar value to ^{50}Ca . Therefore, shell ordering $p_{3/2}\text{-}p_{1/2}\text{-}f_{5/2}$ is consistent with occurring of shell closures in ^{52}Ca and ^{54}Ca .

Trend along the atomic number

The shell evolution of N=32, 34 are very similar in the region from Z=28 (Ni) to 22 (Ti). The N=32 gap grow up between Ti-Sc isotopes, while the N=34 gap increases between Sc-Ca isotopes.

The N=36 isotones are flat trend with small δe values and have open-shell properties.

Comparison to the trend of $E_x(2^+)$

In this n-rich Ca region, trend of Ex(2+) energies is similar to that of the Δ_{2n} gaps rather than δe gaps

It is reasonable that difference of pairing energies between lower and upper orbitals affects the 2⁺ excitation energies.

$$\Delta_{2n} = 2[\delta e - \Delta_3(N+1) + \Delta_3(N-1)],$$

Through the present measurement, we also obtain the energy differences of pairing gaps. Based on the values, we reasonably understand that the Ex(2+) difference in $5^{2,54}Ca$ is mainly originated from the pairing energy differences in $p_{3/2}$, $p_{1/2}$ and $f_{5/2}$ orbitals.

Performance of the present mass measurements

- achieved the almost highest mass precisions ever reached in the TOF mass measurement technique
 - 53,54Ca: comparable to uncertainties in MRTOF at ISOLTRAP
- accessed more neutron-rich region far from stability than those in the other TOF mass measurement facilities

Summary

- We demonstrated that TOF-Br method by using BigRIPS+SHARAQ with Diamond detector is effective to measure the masses of short-lived nuclei extremely far from the beta stability.
- Successful mass measurements of ⁵⁵⁻⁵⁷Ca were done. Achieved mass resolutions are:

160 keV(σ)	(⁵⁵ Ca: ~3300 events)
250 keV(σ)	(⁵⁶ Ca: ~600 events)
990 keV(σ)	(⁵⁷ Ca: ~30 events)

- The neutron shell gap in ⁵⁴Ca has a property of shell closure and that in ⁵⁶Ca is weaker.
- The shell evolution of N=32, 34 make difference at Sc isotopes. The shell closure at N=34 increase significantly at ⁵⁴Ca.