Spectroscopy of ${ }^{100}$ In with neutron knockout reactions

Joochun (Jason) Park, Lund University

High-resolution γ-ray spectroscopy at the RIBF Workshop
Apr. 11, 2019, Darmstadt

Gamow-Teller decay of ${ }^{100} \mathrm{Sn}$

C. B. Hinke et al., Nature 486, 341 (2012)

RIBF9 experiment

- WAS3ABi + EURICA in 2013
- Average ${ }^{124} \mathrm{Xe}$ rate: $20 \mathrm{pnA}, 200$ hours
- ~2500 ${ }^{100}$ Sn produced, $\times 10$ in statistics
- New isotopes identified

$$
\mathrm{B}_{\mathrm{GT}}\left({ }^{100} \mathrm{Sn}\right): 5.8_{-3.2}^{+5.5}(\mathrm{GSI}-1), 9.1_{-2.6}^{+3.0}(\mathrm{GSI}-2), 4.4_{-0.7}^{+0.9}(\text { RIKEN })
$$

$\beta \gamma$ spectroscopy of ${ }^{100} \mathrm{In}$ from RIBF9

 Reduced EURICA efficiency:4.6% at 1 MeV (with addback)
$\gamma \gamma$ coincidence relations:

- 95-141-436 pairwise
- 141-1297
- 95-2048 (1 count)

95, 141-keV γ^{\prime} s likely M1, not delayed

1297, 2048-keV parallel branches?

Not much room (< 15\%) for feeding into other states

SM calculations of ${ }^{100} \mathrm{Sn} \rightarrow{ }^{100} \mathrm{In}$ decay, levels

(a) Stone and Walter

(d) Experiment

Unobserved γ-ray energies: $751,800-1100,1187 \mathrm{keV}$ Compared to I \pm סI (1297 keV) and I(1297)/I(2048), growing concerns
$5^{+} \rightarrow 6^{+}: 30 \pm 30 \mathrm{keV}$ assumed
$\mathrm{Q}_{\mathrm{EC}}\left({ }^{100} \mathrm{Sn}\right)=7.03$ (24) MeV (AME2016), $6.9(10) \mathrm{MeV}$ (PRL 77, 2400 (1996)) This work: 7.69(16) MeV

Spectroscopy on ${ }^{100}$ In

Objectives:

- Attain a more complete low-spin, low-energy level scheme of ${ }^{100} \mathrm{In}$: precise gauge of systematic uncertainties on ${ }^{100} \mathrm{Sn} \mathrm{B}_{\mathrm{GT}}$
- Fix the yrast 1^{+}state energy for $\left.\mathrm{Q}_{\mathrm{EC}}{ }^{100} \mathrm{Sn}\right)$ and comparisons with SM
- Probe the single-particle structure of ${ }^{100}$ In through in-beam γ-ray spectroscopy

Method: neutron knockout reactions on ${ }^{101,102}$ In

Observables:

- Previously unobserved bridge transitions in ${ }^{100} \mathrm{In}$, or confidence limits
- γ rays from higher 1^{+}states in ${ }^{100}$ In
- Lifetimes of yrast $3^{+}, 4^{+}, 5^{+}$states from 95/141/436-keV $\gamma^{\prime} s \rightarrow B(M 1)$
- $1 \mathrm{n}, 2 \mathrm{n}$ knockout cross sections to different states

Experiment proposal details

Primary beam: ${ }^{124} \mathrm{Xe}, 345 \mathrm{MeV} / \mathrm{u}, 80 \mathrm{pnA}$
Primary target: 4-mm Be
Secondary target: $\mathrm{CH}_{2}, 500 \mathrm{mg} / \mathrm{cm}^{2}$ and $\mathrm{C}, 400 \mathrm{mg} / \mathrm{cm}^{2}$
[similar to ${ }^{104} \mathrm{Sn},{ }^{102} \mathrm{Cd} 2 \mathrm{n}$ knockout with DALI2 by A. Corsi et al., 2018]
Secondary beam energies: $\sim 150 \mathrm{MeV} / \mathrm{u}$ Intensities at F8 from LISE++:

${ }^{100} \mathrm{Sn}$	${ }^{101} \mathrm{Sn}$	${ }^{002} \mathrm{Sn}$	${ }^{103} \mathrm{Sr}$	${ }^{100}$ Sn	${ }^{101} \mathrm{Sn}$	${ }^{\text {Sn }}$	${ }^{103} \mathrm{Sn}$	
$1.21 \mathrm{e}-8$ 0%	$\begin{aligned} & 8.19 e-2 \\ & 8.366 \% \end{aligned}$	$\begin{aligned} & 2.52 \mathrm{e}+1 \\ & 47.028 \% \end{aligned}$	$\begin{aligned} & 2.17 \mathrm{e}+1 \\ & 1.151 \% \end{aligned}$	$\begin{aligned} & 4.92 e-8 \\ & 0 \% \end{aligned}$	$\begin{gathered} 5.29 e-7 \\ 0 \% \end{gathered}$	$\begin{aligned} & 4.42 \mathrm{e}+0 \\ & 8.254 \% \end{aligned}$	$\begin{gathered} 8.98 \mathrm{e}+2^{2} \\ \hline 47.587 \% \end{gathered}$	
${ }^{99}$ \|n	100]n	${ }^{101}$ In	102\|		${ }^{99}$!n	100]n	101]n	${ }^{102}$ In
$\begin{gathered} 4.18 e-7^{2} \\ .0 \% \end{gathered}$	$\begin{aligned} & 1.21 \mathrm{e}+1 \\ & 5.687 \% \end{aligned}$	$\begin{aligned} & 2.48 \mathrm{e}+3 \\ & 57.418 \% \end{aligned}$	$\begin{aligned} & 5.15 \mathrm{e}+3 \\ & 6.387 \% \end{aligned}$		$2.55 e-5$	$\begin{aligned} & 2.84 \mathrm{e}+2 \\ & 6.579 \% \end{aligned}$	$\begin{aligned} & 4.64 \mathrm{e}+4 \\ & 57.565 \% \end{aligned}$	
${ }^{98} \mathrm{Cd}$	${ }^{99} \mathrm{Cd}$	${ }^{100} \mathrm{Cd}$	${ }^{101} \mathrm{Cd}$	${ }^{98} \mathrm{Cd}$	${ }^{99} \mathrm{Cd}$	${ }^{100} \mathrm{Cd}$	${ }^{101} \mathrm{Cd}$	
$1.17 \mathrm{e}-4$ 0%	1.17e+2 0.706%	$\begin{aligned} & 8.92 \mathrm{e}+4 \\ & 50.86 \% \end{aligned}$	$\begin{aligned} & 1.75 \mathrm{e}+5 \\ & 8.981 \% \end{aligned}$	$4.2 e$	3.72	$\begin{aligned} & 1.71 \mathrm{e}+3 \\ & 0.973 \% \end{aligned}$	$\begin{aligned} & 1.02 \mathrm{e}+6 \\ & 52.123 \% \end{aligned}$	
${ }^{97} \mathrm{Ag}$	${ }^{98} \mathrm{Ag}$	${ }^{99} \mathrm{Ag}$	${ }^{100} \mathrm{Ag}$	${ }^{97} \mathrm{Ag}$	${ }^{98} \mathrm{Ag}$	${ }^{99} \mathrm{Ag}$	${ }^{100} \mathrm{Ag}$	
	7.94e +1 0.018\%	$\begin{aligned} & 4.02 \mathrm{e}+5 \\ & 8.076 \% \end{aligned}$	$\begin{aligned} & 3.46 \mathrm{e}+5 \\ & 1.311 \% \end{aligned}$	$3.12 \mathrm{e}-3$ 0%		$1.69 \mathrm{e}+3$ 0.034%	$2.51 \mathrm{e}+6$ 9.501\%	
Optimized for ${ }^{101}$ In				Optimized for ${ }^{102}$ In				

- Need to suppress Cd, Ag
- ${ }^{102}$ In perhaps too intense for BigRIPS + ZeroDegree

BigRIPS + ZeroDegree PID trigger

Yield estimates

Beam time: 3 days (72 hours) on $\mathrm{CH}_{2}, 2$ days on C targets
Secondary beam intensities at F 8 , centered on ${ }^{101} \mathrm{In}$:

- ${ }^{101} \mathrm{In}: 2.48 \times 10^{3} \mathrm{pps}$
- $\quad{ }^{102} \mathrm{In}: 5.15 \times 10^{3} \mathrm{pps}$

Secondary target: $\mathrm{CH}_{2}, 500 \mathrm{mg} / \mathrm{cm}^{2}$
Transmission through ZeroDegree: 57-58\%
PID, operation efficiency: 70\%
Neutron knockout cross sections into excited states in ${ }^{100} \mathrm{In}$:

- 1 mb for 1 n knockout [0.8-2.3 mb in ${ }^{70} \mathrm{Kr}$ (K. Wimmer)]
- 0.1 mb for 2 n knockout [0.5(2), 1.4(9) mb for 2^{+}states in ${ }^{102} \mathrm{Sn}$ (A. Corsi), $0.04-0.08 \mathrm{mb}$ in ${ }^{70} \mathrm{Kr}$ (K. Wimmer)]

Median HPGe array efficiency: 5\% (search range: 500-3000 keV)
Expected γ-ray counts assuming 100\% branch:

- 600 from 1 n knockout on ${ }^{101}$ In
- 130 from $2 n$ knockout on ${ }^{102}$ In
$\rightarrow \sim 10$ increase in statistics; 3γ coincidences

On shielding/mass measurements, ${ }^{99} \mathrm{In}$

If atomic background is huge, then $\mathrm{Pb}+\mathrm{Sn}$ shielding is necessary

- Reduced efficiency for < 150-keV γ^{\prime} s; search for $5^{+} \rightarrow 6^{+}$more difficult
- Intensity and $\gamma \gamma$ coincidence analysis with 436/1297-keV γ 's
- Main search region above 500 keV , less background

If shielding is not needed:

- Energy resolution at $\sim 100 \mathrm{keV}$?
- Lifetime measurements for 95/141-keV γ 's?

Mass measurements at F11:

- $\mathrm{Q}_{\mathrm{EC}}\left({ }^{100} \mathrm{In}\right)=9.88(18) \mathrm{MeV}$ (decay spectroscopy)
- $\mathrm{Q}_{\mathrm{EC}}\left({ }^{101} \mathrm{In}\right)=7.22(20)^{*} \mathrm{MeV}$ (AME2016 extrapolation)

(Construction proposal, $1 \mathrm{MeV} \gamma$)
${ }^{99}$ In from $2 n$ knockout of ${ }^{101}$ In:
About 1500 reactions expected, one excited state from $p_{1 / 2}$ proton hole ($S_{p} \sim 1 \mathrm{MeV}$); γ-ray from $1 / 2^{-}$isomer?

