Spectroscopy of ¹⁰⁰In with neutron knockout reactions

Joochun (Jason) Park, Lund University

High-resolution γ -ray spectroscopy at the RIBF Workshop Apr. 11, 2019, Darmstadt

Gamow-Teller decay of ¹⁰⁰Sn

RIBF9 experiment

- WAS3ABi + EURICA in 2013
- Average ¹²⁴Xe rate: 20 pnA, 200 hours
- ~2500 ¹⁰⁰Sn produced, × 10 in statistics
- New isotopes identified

$\beta\gamma$ spectroscopy of $^{100}\mbox{In}$ from RIBF9

Reduced EURICA efficiency: 4.6% at 1 MeV (with addback)

 $\gamma\gamma$ coincidence relations:

- 95-141-436 pairwise
- 141-1297
- 95-2048 (1 count)

95, 141-keV $\gamma 's$ likely M1, not delayed

1297, 2048-keV parallel branches?

Not much room (< 15%) for feeding into other states

SM calculations of $\,{}^{100}\text{Sn} \rightarrow {}^{100}\text{In}$ decay, levels

(d) Experiment

Unobserved γ -ray energies: 751, 800-1100, 1187 keV Compared to I ± δ I (1297 keV) and I(1297)/I(2048), growing concerns

 $5^+ \rightarrow 6^+: 30 \pm 30 \text{ keV}$ assumed

 $Q_{EC}^{(100}Sn) = 7.03(24) \text{ MeV} (AME2016),$ 6.9(10) MeV (PRL 77, 2400 (1996)) This work: 7.69(16) MeV

Spectroscopy on ¹⁰⁰In

Objectives:

- Attain a more complete low-spin, low-energy level scheme of ¹⁰⁰In: precise gauge of systematic uncertainties on ¹⁰⁰Sn B_{GT}
- Fix the yrast 1⁺ state energy for Q_{EC} (¹⁰⁰Sn) and comparisons with SM
- Probe the single-particle structure of $^{100}\mbox{In}$ through in-beam $\gamma\mbox{-ray}$ spectroscopy

Method: neutron knockout reactions on ^{101,102}In

Observables:

- Previously unobserved bridge transitions in ¹⁰⁰In, or confidence limits
- γ rays from higher 1⁺ states in ¹⁰⁰In
- Lifetimes of yrast 3⁺, 4⁺, 5⁺ states from 95/141/436-keV γ 's \rightarrow B(M1)
- 1n, 2n knockout cross sections to different states

Experiment proposal details

Primary beam: ¹²⁴Xe, 345 MeV/u, 80 pnA Primary target: 4-mm Be

Secondary target: CH₂, 500 mg/cm² and C, 400 mg/cm² [similar to ¹⁰⁴Sn, ¹⁰²Cd 2n knockout with DALI2 by A. Corsi et al., 2018]

Secondary beam energies: ~150 MeV/u Intensities at F8 from LISE++:

Optimized for ¹⁰¹In

Optimized for ¹⁰²In

- Need to suppress Cd, Ag
- ¹⁰²In perhaps too intense for BigRIPS + ZeroDegree

BigRIPS + ZeroDegree PID trigger

Yield estimates

Beam time: 3 days (72 hours) on CH_2 , 2 days on C targets Secondary beam intensities at F8, centered on ¹⁰¹In:

- ¹⁰¹In: 2.48 × 10³ pps
- ¹⁰²In: 5.15 × 10³ pps

Secondary target: CH₂, 500 mg/cm² Transmission through ZeroDegree: 57-58% PID, operation efficiency: 70%

Neutron knockout cross sections into excited states in ¹⁰⁰In:

- 1 mb for 1n knockout [0.8-2.3 mb in ⁷⁰Kr (K. Wimmer)]
- 0.1 mb for 2n knockout [0.5(2), 1.4(9) mb for 2⁺ states in ¹⁰²Sn (A. Corsi), 0.04-0.08 mb in ⁷⁰Kr (K. Wimmer)]

Median HPGe array efficiency: 5% (search range: 500-3000 keV) Expected γ -ray counts assuming 100% branch:

- 600 from 1n knockout on ¹⁰¹In
- 130 from 2n knockout on ¹⁰²In
- \rightarrow ~10 increase in statistics; 3 γ coincidences

On shielding/mass measurements, ⁹⁹In

If atomic background is huge, then Pb + Sn shielding is necessary

- Reduced efficiency for < 150-keV γ 's; search for 5⁺ \rightarrow 6⁺ more difficult
- Intensity and $\gamma\gamma$ coincidence analysis with 436/1297-keV γ 's
- Main search region above 500 keV, less background

If shielding is not needed:

- Energy resolution at ~100 keV?
- Lifetime measurements for 95/141-keV γ 's?

Mass measurements at F11:

- Q_{EC}(¹⁰⁰In) = 9.88(18) MeV (decay spectroscopy)
- Q_{EC}(¹⁰¹In) = 7.22(20)* MeV (AME2016 extrapolation)

About 1500 reactions expected, one excited state from $p_{1/2}$ proton hole (S_p ~ 1 MeV); γ -ray from $1/2^-$ isomer?

