Contribution ID: 26

Spectroscopy of 100In with neutron knockout reactions

Thursday, 11 April 2019 10:15 (15 minutes)

The robustness of the proton and neutron shells for the doubly magic nucleus ¹⁰⁰Sn has been studied in β -decay experiments, resulting in the smallest log ft value for the decay of the ¹⁰⁰Sn ground state to the (1⁺) state in ¹⁰⁰In. A decay spectroscopy experiment at the RIBF has improved the statistical uncertainties on the corresponding Gamow-Teller decay strength B_{GT} by a factor of ~3, due to a tenfold increase in statistics. At the same time, a sizable reduction in B_{GT} compared to the previous results was observed.

However, the extraction of the B_{GT} value requires an accurate knowledge of the level scheme of the daughter nucleus 100 In. In comparison with large-scale shell model calculations, multiple arrangements of γ rays in 100 In are possible due to unobserved weak γ -ray branches and a limited set of $\gamma\gamma$ coincidences. Furthermore, β -decay branches to higher-lying (1^+) states in 100 In have not been measured. The resulting systematic uncertainty on the B_{GT} value is now comparable to the statistical uncertainty.

In order to ascertain and expand on the level scheme of 100 In for tests of SM and improvements in the precision on the Gamow-Teller decay properties of 100 Sn, a neutron knockout experiment on 101,102 In is proposed. Doppler-corrected γ -ray energies separated by as little as 40 keV at $E_{\gamma} \sim 100$ keV should be resolved with the HPGe array.

Primary author: PARK, Joochun (Jason) (Lund University)Presenter: PARK, Joochun (Jason) (Lund University)Session Classification: Proposals