

Technical Considerations for In-Beam Gamma-Ray Experiments at the RIBF

P. Doornenbal ピーター ドルネンバル

Outline

Accelerators

BigRIPS

F8 Area

Summary

Accelerators

BigRIPS

Secondary and total beam rates

PID

- Resolution
- F8 area
 - Space
 - Tracking
 - Atomic background
- ZeroDegree

Accelerators

HR Workshop, Darmstadt, Apr. 10-12, 2019 - 4

RIBF Overview

RIBF Overview

Superconducting Ring Cyclotron (SRC)

Intensities	of 345 N	leV/u beams from	n the SRC	R	-		
Nucleus	Beam Intensity / pnA			A State of the sta	H b		
	Goal	Achieved Max	Average		• .	K = 2500 MeV	
⁴⁸ Ca	1000	730	500	A HANNE		8300 tons	
⁷⁰ Zn	1000	250	200	Marrie -	•	5.36 m extraction radi	us
⁷⁸ Kr	1000	486	300			6 sector magnets	
¹²⁴ Xe	100	100	80			Four main RF cavities	
²³⁸ U	100	58	40				,

Superconducting Ring Cyclotron (SRC)

⁴⁸Ca might not be available in 2020.

In fall 2018, a stable primary beam intensity of 60 pnA was maintained for ²³⁸U.

BigRIPS

HR Workshop, Darmstadt, Apr. 10–12, 2019 – 7

Production cross sections known for many nuclei

PID Detectors

Detailed technical information provided under:

http://ribf.riken.jp/BigRIPSInfo/

Secondary Beam Rate Estimation and Production

- Calculated with LISE++
 - Files available here:
 - http://www.nishina.riken.jp/RIBF/BigRIPS/intensity.html
 - Many measured cross sections included
- Include beam dump (beam power \approx 10 kW)
 - Visit here:
 - http://ribf.riken.jp/BigRIPSInfo/beamdump/
- Typical total rate limitations: 100 kHz at F3, 10 kHz at F7
 - Momentum selection with dipole D1 and F1 slits
 - Degraders at F1 and F5
 - Slits at F1, F2, F5, F7
- Secondary beams are prepared by the BigRIPS team
 - User provides LISE++ file, already with proposal

Secondary Beam Rate Estimation and Production

F8 Area

HR Workshop, Darmstadt, Apr. 10–12, 2019 – 11

Our Standard F8 Setup

Scattering angle reconstruction resolution of 5 mrad (σ)

High-Resolution Setup

- 6 Miniball clusters at 30°, 270 mm distance
- 2 additional Miniball at 65°, 200 mm distance
- Berkeley P3 triple, RCNP quad at 65°, 130 mm distance
- DAGATA triple at 65°, 130 mm distance
- With 1 mm Pb, 1 mm Sn shielding, standard beam pipe
 - 8 % efficiency at 1 MeV
 - Further/other detectors are under discussion

Details on the expected performance will be discussed by Kathrin

Secondary Targets and Atomic Background

- Large atomic background
 - Depends on secondary beam and target
- Requires Shielding
 - 1 mm Pb, 1 mm Sn rather conservative
 - Further simulations necessary
 - Better in front of detectors, not along beam
- Large angular straggling
 - No safe cut
 - See Presentation by Andrea

ZeroDegree Spectrometer

Summary

HR Workshop, Darmstadt, Apr. 10-12, 2019 - 16

Budget required for Arra	Ŋ	57,400(x 1k¥)		
Item	Cost	ltem	Cost	
Travel	2,000	Maintenance Ge	2,000	
Pumping system	1,600	HV Power	5,000	
UPS	2,000	Liq. N2 system	3,000	
Liq. N2 Dewar	3,500	Cooling pipes	400	
Shipping	2,000	Rail system	4,000	
Digitizer	10,000	Trigger modules	2,500	
VME crates	1,400	IOC	4,000	
Computer Cluster	10,000			

Need electronics to readout 568 channels in total

 $8 \times 3 \times 7$ for MINIBALL

10 \times 40 for Ge tracking detectors

RCNP and CAGRA collaboration provide electronics for ≈ 400 channels

Kakenhi approved, Kiban A, \approx 27,000 k¥, rest should come from RIKEN

Summary

- Accelerator beam intensities, production cross sections well known
 - We have good predictions for expected rates
- Typical rate limitations are 100 kHz at F3 and 10 kHz and F7
- BigRIPS selection along isotonic chains
- Common dead time for beam line detectors ($\approx 50 \mu s$)
- Atomic background severe
- With present setup tracking resolution of 5 mrad (σ)
 - Less than typical angular straggling in high-Z secondary targets
- Can start ordering equipment since April 1st

Thank You!

HR Workshop, Darmstadt, Apr. 10-12, 2019 - 19