Measurement of flavor asymmetry of light antiquarks in proton via Drell-Yan process at Fermilab SeaQuest

> CNS + Radiation Lab Seminar 2019/01/29 @ RIKEN

> > Kenichi Nakano

Tokyo Tech

Outline

- 1. Research motivation
 - Partonic structure of proton (nucleon)
 - $\circ~$ Experimental & theoretical understandings on $ar{d}(x)/ar{u}(x)$
 - ° Drell-Yan process for $\bar{d}(x)/\bar{u}(x)$
- 2. Experimental setup
 - Beam, target & spectrometer
 - Data taking
- 3. Method & result of $\bar{d}(x)/\bar{u}(x)$ measurement
 - Extraction method
 - Preliminary result
 - Recent progress
- 4. "E1039/SpinQuest", the successor with polarized target
- 5. Summary

1. Research Motivation

Internal Structure of Proton (Nucleon)

• Representations at various probing scale

- Proton structure at energy scale $\mu \gtrsim 1$ GeV ($\lambda \lesssim 1$ fm) will be discussed
- $\circ~$ Dynamical creation of anti-quarks from gluons ... g
 ightarrow qar q
 - $^{\circ\circ}~$ Breakdown of proton momentum: $q:ar{q}:g\sim45\%:10\%:45\%$ @ $\mu\sim10~{
 m GeV}$

Internal Structure of Proton (Nucleon)

• Parton distribution function: $f(x, \mu^2)$

- The anti-quark distribution is flavor symmetric?
 - Strong force is independent of flavor
 - $\circ~~{
 m Splittings}~{
 m of}~g
 ightarrow uar{u}~\&~g
 ightarrow dar{d}~{
 m occur}~{
 m equally}$

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

- CERN NMC ('90): deep inelastic muon scattering
 - $\circ~$ Gottfried Sum: $S_G=0.2281(65)<1/3$
 - $\circ~\int \bar{d}(x) dx > \int \bar{u}(x) dx$... discovery of flavor asymmetry of anti-quarks in proton
- Measurement of x dependence of $\bar{u}(x)$ & $\bar{d}(x)$: Drell-Yan process
 - $\circ~{
 m CERN}~{
 m NA51}$ ('94): $ar{d}>ar{u}~{
 m at}~x\sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between u & d (${\sim}2$ & 5 MeV) in g
 ightarrow q ar q
 - \circ Very small and even results in $ar{d} > ar{u}$
- Pauli blocking ... *PRD15, 2590 (1977)*
 - $\circ \ \textit{Prob}(g \rightarrow u \bar{u}) < \textit{Prob}(g \rightarrow d \bar{d}) \ \text{since} \ p = u u d$
 - Cannot explain the measured size ... NPB149, 497 (1979)
 - Even $\overline{d} < \overline{u}$ via connected sea (at high *x*)? ... *PLB736*, 411 (2014)
- Chiral quark model ... PRD59, 034024 (1999)
 - Effective interaction between Goldstone boson (π) & valence quark
 - $\circ \; \ket{q_{ ext{constituent}}} = \left(1 rac{3a}{2}
 ight) \ket{q} + rac{3a}{2} \ket{q\pi}$

time \rightarrow

Theories of \bar{d}/\bar{u} Asymmetry (2)

- Statistical model ... NPA941, 307 (2015)
 - $\circ~$ Based on the Fermi & Bose statistics
 - Predicts $\bar{d}(x) \bar{u}(x) = \Delta \bar{u}(x) \Delta \bar{d}(x)$
- Meson cloud model ... PRD58, 092004 (1998)

$$\circ ~|p
angle = (1-a-b)|p_0
angle + a|N\pi
angle + b|\Delta\pi
angle$$

- More \overline{d} in π^+ as $|n\pi^+\rangle$ etc.
- Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
- \circ Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L = 1 of π to make $J^P = 1/2^+$ of proton, as parity of π is $J^P = 0^-$)

Comparison of Theories to Measurements

Meson cloud model: PRD58, 092004 Chral quark model: NPA596, 397 Chral quark model: PRD59, 034024 Instanton model: PLB304, 167 (Updated calculations exist)

The x dependence of d

 ā(x)/*ū*(x) is the key to develope/examine models
 Sharp drop at x ~ 0.3. Even go down to *d* < *ū*?

Flavor Asymmetry by Lattice QCD

- Direct calculation of PDF (not Mellin moment)
 - With large-momentum effective theory (LaMET)
 - ETM collaboration

• LP³ collaboration

arXiv:1803.04393 (2018)

• $\overline{d}(x)/\overline{x}(x)$ is an attractive object on lattice as well

Measurement of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Invariant mass: $M^2 = x_{beam} x_{target} s$, Rapidity: $\exp Y = \sqrt{x_{beam}} / x_{target}$ • $x_{beam} = \frac{M}{\sqrt{s}} e^Y$, $x_{target} = \frac{M}{\sqrt{s}} e^{-Y}$
 - Cross section at LO:

- Only "q_{be}(x_{be}) q̄_{ta}(x_{ta})" survives @ forward rapidity,
 i.e. quark in beam & anti-quark in target
- Ratio of cross sections with LH2 & LD2 targets

$$rac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})} = rac{\sigma_{pp}(x_{ta}) + \sigma_{pn}(x_{ta})}{2\sigma_{pp}(x_{ta})} pprox rac{1}{2} \left(1 + rac{ar{d}(x_{ta})}{ar{u}(x_{ta})}
ight)$$

• SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ particularly at high x (0.15 $\lesssim x \lesssim 0.45$)

Aim to Research Anti-Quark in Proton

- 1. Improve the accuracy of anti-quark PDFs
 - Proton is widely used in various research
 - $\circ~ar{q}(x)$ is an input of hadron-reaction simulations (ex: $u+ar{d}
 ightarrow W^+$)
- 2. Investigate QCD effects on the proton structure
 - All anti-quarks are dynamically created by QCD
- 3. Examine hadron models based on QCD effective theory
 - Each model represents an aspect of hadrons
 - Can it well describe antiquarks also?

2. Experimental Setup

USA

Fermi National Accelerator Lab

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - $^\circ~5~{\rm sec}$ for E906
 - 55 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec in spot size

FNAL-SeaQuest Collaboration

- Institutes
 - Abilene Christian Univ.
 - Argonne National Lab
 - Fermi National Accelerator Lab
 - KEK Jp
 - Los Alamos National Lab
 - Univ. of Michigan
 - RIKEN _{Jp}
 - Tokyo Tech _{Jp}

- Academia Sinica Tw
- Univ. of Colorado
- Univ. of Illinois
- $\circ~$ Ling-Tung Univ. $_{\rm Tw}$
- Univ. of Maryland
- National Kaohsiung Normal Univ.
- Rutgers Univ.
- Yamagata Univ. Jp

SeaQuest Hall — 2015-July-27

Measurement of flavor asymmetry of light antiquarks in proton via Drell-Yan process at Fermilab SeaQuest

SeaQuest Targets

- LH₂, LD₂
 - $\circ~50.8~cm\sim0.1$ interaction lengths
- Iron, Carbon, Tungsten

E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

• A typical Drell-Yan event (top view) ... mass = 6 GeV, $\theta_{\mu^+} = 90^\circ$, $\phi_{\mu^+} = 0^\circ$

- Detection of dimuons
 - Station 1-3 : Tracking with drift chambers
 - Station 4 : Particle identification with drift tube
 - $\circ~$ Momenta of detected muons are 40 GeV/c on average

SeaQuest Data Taking

Data-taking periods

Year	Month	Event
2012	03-04	1st data taking (commissioning)
2013	11-	2nd data taking (10 months)
2014	11-	3rd data taking (8 months)
2015	10-	4th data taking (10 months)
2016	12-	5th data taking (7 months)

- Beam protons on targets
 - $^\circ~1.4\times10^{18}~recorded$
 - $\circ~0.6 imes 10^{18}$ analyzed for preliminary $ar{d}/ar{u}$
- Last data taken in FY2017
 - Wider chamber acceptance at St. 1 \implies 40% more events at high $x (\sim 0.4)$
 - Top+Top & Bottom+Bottom events (thanks to faster DAQ)
 - \implies 30% more events

3. Method & Result of $\bar{d}(x)/\bar{u}(x)$ Measurement

Extraction of $\overline{d}(x)/\overline{u}(x)$ — Step 1

- Measure Drell-Yan events with two targets
 - LH2 & LD2 targets
 - $^{\circ}$ Invariant mass $> 4.2~{
 m GeV}$
- Correct Drell-Yan yields for
 - Backgrounds
 - Reconstruction efficiency (due to detector hit rates)
- Normalize with relative luminosity
- Take the ratio of normalized yields

$$rac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})}pprox rac{1}{2}\left(1+rac{ar{d}(x_{ta})}{ar{u}(x_{ta})}
ight)$$

- $\circ~~{
 m Systematic}~{
 m errors}~{
 m cancel}~{
 m out}~{
 m between}~\sigma_{pd}~{
 m \&}~\sigma_{pp}$
- Direct observable in experiment

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

• Preliminary result with ${\sim}70\%$ of FY 2014 & 2015 data

- Systematic errors
 - H contamination of LD2 target
 - Background subtraction
 - Tracking efficiency correction
- $\sigma_{pd}/2\sigma_{pp}$ always > 1 in measured *x* range

Extraction of $\bar{d}(x)/\bar{u}(x)$ — Step 2

- Derive $\bar{d}(x)/\bar{u}(x)$ from $\sigma_{pd}/2\sigma_{pp}$
 - This relation is not accurate at high x_{ta}

$$rac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})}pprox rac{1}{2}\left(1+rac{ar{d}(x_{ta})}{ar{u}(x_{ta})}
ight)$$

because the assumption " $x_{be} \gg x_{ta}$ " breaks

- $\circ~$ Iterative calculation from $ar{d}/ar{u}$ to $\sigma_{pd}/2\sigma_{pp}$
- 1. Have the measured $\sigma_{pd}/2\sigma_{pp}~(\equiv R_{meas})$
- 2. Initialize $\bar{d}(x)/\bar{u}(x) = 1$
- 3. Calculate the cross-section ratio ($\equiv R_{pred}$) without assuming $x_{be} \gg x_{ta}$:

$$\sigma \propto \sum_{q=u,d} e_q^{-2} \left\{ q_{be}(x_{be}) ar{q}_{ta}(x_{ta}) + ar{q}_{be}(x_{be}) q_{ta}(x_{ta})
ight\}$$

- •• Use event-by-event measured kinematics $(x_{be} \& x_{ta})$
- •• Take $u(x), d(x) \& \bar{u}(x) + \bar{d}(x)$ from CT10 PDF
- 4. Adjust $\overline{d}(x)/\overline{u}(x)$ to reduce $R_{pred} R_{meas}$
- 5. Go back to #3 until $R_{pred} \approx R_{meas}$

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Preliminary result

- Systematic errors
 - Errors of cross-section ratio
 - Errors of CT10 PDF
 - $\circ \ ar{d}/ar{u}$ outside the measured x range
- $\bar{d}/\bar{u} > 1$ at high x also

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

Comparison with other measurements

- All agree at small x
- $\circ ~~ar{d}/ar{u}~{
 m at}~x\sim 0.3~{
 m seems}~{
 m higher}~{
 m by}~{
 m SeaQuest}$
 - ... Physical reasons for this difference are being investigated

Anti-Quark Flavor Asymmetry: d/\bar{u}

• Comparison with PDF models

• The key region is definitely *x* ~ 0.3

Recent Progress in Analysis

- Improvement in detector alignments
 - More parameters and finer time periods
- Increase of statistics
 - $\circ~$ Detailed QAs and better calibrations $\Longrightarrow 50\%$ more analyzable events
 - Optimized dimuon selection for better S/N
- New correction method
 - Key effect = beam-intensity dependence
 - $\circ\circ$ Efficiency of event reconstruction
 - •• Amount of random background
 - Past: "realistic" GMC simulation
 - New: intensity extrapolation
 - •• Cross-section ratio vs intensity
 - •• Extrapolation to "intensity = 0"

4. E1039/SpinQuest: Successor with Polarized Target

Measurement of flavor asymmetry of light antiquarks in proton via Drell-Yan process at Fermilab SeaQuest 31/35

Sivers Distribution Function: $f_{1T}^{\perp}(x_{Bj}, k_T)$

- One of the eight transverse momentum dependent (TMD) PDFs
 - Correlation between nucleon spin (S) & quark transverse momentum (k_T)
- Of quarks
 - $^\circ~$ Rather well constrained by measurements of SIDIS, $p^\uparrow + p \to W^\pm/Z$ & $\pi + p^\uparrow$ Drell-Yan
- Of antiquarks
 - Uncertain
 - $^\circ~$ Accessible by $p+p^\uparrow$ Drell-Yan

${\bf E1039/SpinQuest} \approx {\bf Polarized} \; {\bf Target} + {\bf SeaQuest}$

- Experimental design
 - SeaQuest spectrometer (almost as it is)
 - Polarized target
 - $^{\circ\circ}~$ NH $_3$ & ND $_3$ with $L=8~{\rm cm}, B=5~{\rm T}$
 - •• Called "Hall-C" target in past
 - •• Refurbished for transverse polarization •• $dB/B < 10^{-4}$ & $P \ge 90\%$ achieved!!
- Status
 - Stage-2 approval was granted from Fermilab in May 2018
 - SeaQuest decommissioning is ongoing, particularly a reconfiguration of the radiation shielding
 - Data taking will start likely in 2019 for two years

During cool-down test in 2018

Prospect of E1039 Measurement

• Sivers TMD PDF of anti-quark

 $\circ~ar{u}$ & $ar{d}$ separately from $p+ec{p}$ & $p+ec{d}$

• Observable: single-spin asymmetry A_N

$$A_N(\phi_S) \equiv \frac{\sigma^{\uparrow}(\phi_S) - \sigma^{\downarrow}(\phi_S)}{\sigma^{\uparrow}(\phi_S) + \sigma^{\downarrow}(\phi_S)} \sim \frac{f(x_B) \cdot f_{1T}^{\downarrow,f}(x_T)}{f(x_B) \cdot \bar{f}(x_T)}$$

- $\circ~~{
 m Measurement}~{
 m accuracy}~\delta_{A_N}\sim 0.04$
- Compare with two calculations based on SIDIS data
 - ••• Blue line takes into account the Collins-Soper-Sterman scale evolution

Phys. Rev. D88, 034016 (2013)

Eur. Phys. J. A39, 89 (2009)

5. Summary

- Internal structure of proton
 - $\circ~$ Large flavor asymmetry $ar{d}(x)/ar{u}(x)$ was observed
 - $\circ~$ SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan process
 - Various aspects (like $\bar{d}(x)$ vs $\bar{u}(x)$, $\Delta \bar{d}(x)$ vs $\Delta \bar{u}(x)$ & $L_{q,\bar{q}}$) are being studied together by experiments & theories
- SeaQuest experiment @ Fermilab
 - $^\circ~$ Recorded 1.4×10^{18} protons on targets by July 2017
 - $^\circ~$ Analyzed 0.6 $imes 10^{18}$ protons for preliminary $ar{d}/ar{u}$
- Method & results of $\bar{d}(x)/\bar{u}(x)$ measurement
 - $\circ~$ Cross-section ratio $\sigma_{p+d}/2\sigma_{p+p}$ was measured
 - $~\circ~~ \bar{d}(x)/\bar{u}(x)$ was extracted with LO calculation
 - $\circ \ ar{d}(x)/ar{u}(x) > 1$ was found up to x = 0.58
 - $^\circ\,$ Analyses toward final result with better statistics & systematics
- E1039/SpinQuest \approx polarized target + SeaQuest
 - Measure the antiquark Sivers function
 - Start this year for two-year data taking