Production of the polyethylene target of the electron scattering for the proton radius puzzle

Yukie Maeda University of Miyazaki

International workshop on the structure of the proton (Proton Structure @ Yamagata 2019) 2019.2.10 Cherry Park Hotel, Sagae, Yamagata

Self introduction

- Research topics
 - Low energy (a few 400 MeV/A) experiments
 - Three-body nuclear force via *N-d* scattering
 - Production of deuterated polyethylene (CD₂) targets
 - Y. M. et al., NIMA 490 (2002) 518.
 - Making self-supporting sheets from CD₂ powder
 - 20 600 mg/cm² (0.2 6 mm) thickness with the uniformity of +/- 20 μm

Proton radius puzzle & ULQ2

- Ultra low Q² (ULQ2) experimental plan @ ELPH
 - e+p cross section @ $E_e = 20-60$ MeV, $\theta = 30^{\circ}-150^{\circ}$
 - Relative meas. of (e+p)/(e+C) with using CH₂ target

Anticipated difficulty

- Comments by a chemist colleague (Prof. J. Matsumoto)
 - Polyethylene w/o additives (添加剤) has "glass transition point (ガラス転移点)" instead of "melting point".
 -> Hard to melt & mold 100% pure CH₂ powder.
 - In general, polyethylene powder on market contains additives (in secret): includes O and N.
 - Polymerization (重合) technique of polyethylene is basic.
 But it is hard to avoid isotopic contaminations.

¹²C enriched polyethylene

- Isotope enriched polyethylene products
 - CD₂, ¹³CH₂ ; purchasable
 - ¹²CH₂; not on sale
- How to product polyethylene ?
 - polymerize monomers into polymer by catalytic reaction

methane H H H H

Welcome any

information about ¹²CH₂ or

¹²C₂H₆ products !

Enriched products on market

Purity of polyethylene on market

フリー百科事典

ポリエチレンはエチレンの単独重合体、エチレンと5mol%以下のa-オレフィレン単量体との共重合体、およびエチレンと官能基に炭素、酸素、および水素原子だけを持つ1mol%以下の非オレフィン単量体との共重合体と定義されている。

Polyethylene is allowed to contain oxygen by definition!

- C:H = 1:2 ?
 - Branch structure
 - Molecular weight (size)
 - Additives

We started to find a way to 1. analyze C/H ratio in polyethylene on market 2. make polyethylene sheets

FTIR (Fourier transform infrared spectrometer) フーリエ変換赤外分光光度計

- All spectra are consistent with polyethylene data.
- No additive is identified.
- Each powder and sheet show same peaks

-> No contamination

Flo-thene

- MG701N
- M13152N
- MA1003N

CHN (Carbon, Hydrogen, Nitrogen) elemental analysis

Burn samples with pure O_2 and measure mixture gas (CO₂, H₂O, NOx, etc) by thermal conductivity detector

	Carbon (%)	Hydrogen (%)	Nitrogen (%)	
Calculations	12/14 = 85.7	2/14 = 14.3	0	
Data (mean)	85.71 +/- 0.09	18.11 +/- 0.02	-0.09 +/- 0.01	
C & N : OK		MAYBE, H2O gas leaked in because of pipe damages inside the device		
H & O : should be checked				

Recipe of polyethylene sheets

- 1. Put powder into SUS mold (2 types)
- Heat a mold with a hot-plate or a ribbon-heater (150°C) for 3-6 hours
- 3. Press a mold by winding-up screws or oil-compressor
- 4. Cool a mold and remove a sheet

Products of CH₂ sheets up to now

Under trial to make 100µm^t sheets without bubbles & with better uniformity

	Mold(thin)	Mold(thick)	
Photo			
	2cm×2cm	3.7cm×4.7cm	
thickness	47µm (11%)	489µm (5.3%) ~	
(non-uni.)		1530µm (3.5%)	
before	47µm (11%)	489µm (5.3%)	
1 rolling	45µm (8.7%)		
4 rolling		391µm (3.8%)	
8 rolling		351µm (2.9%)	

A roller mill from Sugai-Lab. (KEK)

K. Nonaka (M1)

S. Kiyotake(B4)

Supported by Grant-in-Aid for Scientific Research(S) (T. Suda)

Summary

- ULQ2 project needs polyethylene target with the ratio of C/H are precisely known ($\Delta = 0.1\%$).
- We started with normal CH₂ powder:
 - FTIR; no contamination when making sheet from powder
 - CHN analysis; C & N ratios are OK. H & O ??
 - LC/MS; Additive (irgafos®168) was found -> How much ?
 - Making sheets; Uniform (+/- 3%) sheet w/o bubbles
- Remaining tasks
 - Making 100 μm^t sheet with 100% pure CH_2 powder
 - Checking the reduction of thickness by beam irradiation
 - Polymerization of ¹²CH₂ powder