Study of unbound nuclei ³³Ne via 1*p* knock-out reactions

Hyunwoo Chae Seoul National University SAMURAI S027 Collaboration

SAMURAI International Collaboration Workshop 2019, Aug. 30th-31th, Rikkyo University

Island of inversion

• Nuclear chart of the island of inversion

Normal VS Intruder configuration

E. K. Warburton et al., Phys. Rev. C 41 (1990) 1147

- N = 20 shell gap is vanishing for Ne, Na, Mg isotopes.
- The *pf* shell intrude into the *sd* shell at N = 20, leading to vanishing of shell gap.

Island of inversion of Ne

٠

• σ results of ³¹Ne compared with calculation

T. Nakamura et al., PRL 103, 262501 (2009)

- In case of even Ne isotopes, very low E(2+) at N = 20, 22 suggest that ^{30,32}Ne belongs to the island of inversion.
- ³⁰Ne \otimes 2*p*_{3/2} configuration of ³¹Ne ground state is evidence of the island of inversion.
- Spectroscopic study of ³³Ne is expected to broaden the understanding of island of inversion.

Mass of ³³Ne

- It is known that ³³Ne is an unbound nucleus.
- The mass of ³³Ne can be obtained by measurement of S_n .
- AME2012 predicts S_n to be -0.9 MeV.

Experimental setup (BigRIPS)

• S027 experiment

Experimental setup (SAMURAI)

- S027 experiment
- Secondary beam : ³⁴Na
- Secondary target : 12 mm C
- C(³⁴Na, ³³Ne*)
- Proton knockout reaction

Procedure of analysis

- 1. Select the ³⁴Na beam.
 - Beam PID using $B\rho$ - Δ E-TOF method
- 2. Select the ³²Ne & *n* fragments.
 - Charged fragment PID using $B\rho$ - Δ E-TOF method
 - Neutron selection with 1*n* coincidence
- 3. Reconstruct relative energy $(\underline{E_{rel}})$ spectrum.
 - Invariant mass method from 4-momenta of fragments
 - Neutron detector efficiency & geometrical acceptance

Beam analysis

- Beam PID
 - F5 position for rigidity $(B\rho)$ of beam —
 - Energy loss (ΔE) at ICB
 - Time of flight (TOF) from F7 to F13 –
- Beam Profile
 - BDC analysis

 $\frac{A}{Z} = \frac{B\rho}{\gamma m_{\mu} c\beta}$

 $Z = p_0 \sqrt{\frac{\Delta E}{f(\beta_5)}} + p_1$

Beam PID results (³⁴Na)

Secondary beam (³⁴Na) Total number 3.42598×10⁵ Beam intensity ~7 pps ~260 MeV/u Energy $\Delta Z/Z$ 1.32% (in σ) 0.14% (in σ) $\Delta A/A$

Fragments analysis

- Charged fragments PID
 - $B\rho$ reconstruction using FDC data with transfer matrix
 - ΔE at Hodoscope
 - TOF from target to Hodoscope
- Neutron
 - TOF from target to neutron detectors
 - Position at neutron detectors

$$\frac{A}{Z} = \frac{B\rho}{\gamma m_u c\beta}$$

$$Z = p_0 \sqrt{\frac{\Delta E}{f(\beta_5)}} + p_1$$

Fragment momentum

Direction of charged fragments

$$\hat{p} = \frac{\vec{r}_{FDC1} - \vec{r}_r}{\left|\vec{r}_{FDC1} - \vec{r}_r\right|}$$

 \hat{p} : (unit vector of \vec{p}) \vec{r}_{FDC1} : (position at FDC1) \vec{r}_r : (reaction point)

Rigidity $(B\rho)$ of charged fragments

$$p/Z = B\rho = (B\rho)_0(1+\delta)$$

$$\begin{bmatrix} x \\ \theta \\ \delta \end{bmatrix}_{\text{FDC2}} = \begin{bmatrix} (x|x) & (x|\theta) & (x|\delta) \\ (\theta|x) & (\theta|\theta) & (\theta|\delta) \\ (\delta|x) & (\delta|\theta) & (\delta|\delta) \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \delta \end{bmatrix}_{\text{FDC1}}$$

♦ Transfer matrices were obtained from OPTRACE calculation

Neutron analysis

Fragment PID

Acceptance correction

Relative energy spectrum

pulse height > 6 MeVee

Next plan

- Model calculations are necessary to understand the experimental results of ³³Ne.
 - Energy levels of ³³Ne
 - 1*p* knock-out cross section (σ_{-1p})
 - Spectroscopic factor (C^2S)
 - Single particle cross section (σ_{sp})
- Call for theoretical help!

Summary

- The unbound states of ³³Ne, which has not been measured, are populated by 1*p* knock-out reaction performed at S027 experiment.
- Total 27 events of ³²Ne fragments with 1*n* coincidence are clearly identified from ³⁴Na beam with ~7 pps.
- The relative energy spectrum was reconstructed from the momenta of fragments by using invariant mass method.
- Measured $S_n = -0.5$ MeV is compatible with AME 2012 value of -0.9 MeV.
- Model calculations for energy levels and knock-out cross section of ³³Ne will help to interpret the experimental results.

Thank you!