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What are quantum toroidal algebras?

In a nutshell

Toroidal algebras are central extensions of 2-loop algebras (= double affine algebras).

 Quantum toroidal algebras are affine versions of quantum affine algebras.

Main applications:

Construction of integrable systems using the Hopf algebra structure

[Feigin, Jimbo, Miwa, Mukhin 2015]

Non-perturbative symmetries of supersymmetric (SUSY) gauge theories

 From string theory realizations: (p,q)-branes web or topological strings

[Awata, Feigin, Shiraishi 2011]

. Main motivation for introducing our deformation of quantum toroidal gl(p).

Correspondence with W-algebras (AGT correspondence)

[Awata, Feigin, Hoshino, Kanai, Shiraishi, Yanagida 2011]
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Toroidal algebras

Consider a simple Lie algebra g with Chevalley basis x+
ω , x−ω , hω (ω = 1 · · · rank).

! Notations: x+
ω ≡ eω ≡ eαω , x−ω ≡ fω ≡ e−αω .

Example: sl(2) generators x±, h: [h, x±] = ±2x±, [x+, x−] = h.

Affinization is achieved by one of two equivalent methods:

1 Add an extra root to obtain a generalized Cartan matrix Cωω′

Example ŝl(2): x±ω , hω (ω = 0, 1),

[hω, x
±
ω′ ] = ±Cωω′x±ω′ , [x+

ω , x
−
ω′ ] = δωω′hω′ .

2 Central extension of the loop algebra: C[t, t−1]⊗ g⊕ Cc.

Example ŝl(2): x±k = tk ⊗ x±, hk = tk ⊗ h,

[hk , x
±
l ] = ±2x±k+l , [x+

k , x
−
l ] = hk+l + ckδk+l , [hk , hl ] = ckδk+l

 Introduce the currents h(z) =
∑

k∈Z z
−khk , x±(z) =

∑
k∈Z z

−kx±k .

[h(z), x±(w)] = ±2δ(z/w)x±(z), with δ(z) =
∑

k∈Z z
k .

 Toroidal algebras were formulated by combining these two methods.

[Moody, Rao, Yokonuma 1990]
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Example ŝl(2): x±k = tk ⊗ x±, hk = tk ⊗ h,

[hk , x
±
l ] = ±2x±k+l , [x+

k , x
−
l ] = hk+l + ckδk+l , [hk , hl ] = ckδk+l

 Introduce the currents h(z) =
∑

k∈Z z
−khk , x±(z) =

∑
k∈Z z

−kx±k .

[h(z), x±(w)] = ±2δ(z/w)x±(z), with δ(z) =
∑

k∈Z z
k .

 Toroidal algebras were formulated by combining these two methods.

[Moody, Rao, Yokonuma 1990]



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Toroidal algebras

Consider a simple Lie algebra g with Chevalley basis x+
ω , x−ω , hω (ω = 1 · · · rank).

! Notations: x+
ω ≡ eω ≡ eαω , x−ω ≡ fω ≡ e−αω .

Example: sl(2) generators x±, h: [h, x±] = ±2x±, [x+, x−] = h.

Affinization is achieved by one of two equivalent methods:

1 Add an extra root to obtain a generalized Cartan matrix Cωω′
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Quantization

. Quantization is used to define a non-trivial coalgebraic structure.

Reminder: coalgebras have a coproduct ∆ : A → A⊗A, a counit ε : A → C
Hopf algebra: antipode S : A → A such that ∇(S ⊗ 1)∆ = ∇(1⊗ S)∆ = ε.

( R-matrix, Yang-Baxter equation, quantum integrable systems,...)

. Replace the Cartan sector with operators ψ±ω in the universal envelopping algebra.

A parameter q ∈ C× is also introduced.

Example Uq(sl(2)): generators x±, ψ± = q±h,

ψ+x± = q±2x±ψ+, ψ−x± = q∓2x±ψ−, [x+, x−] =
ψ+ − ψ−

q − q−1

∆(x+) = x+ ⊗ 1 + ψ− ⊗ x+, ∆(x−) = 1⊗ x− + x− ⊗ ψ+, ∆(ψ±) = ψ± ⊗ ψ±

S(x+) = −(ψ−)−1x+, S(x−) = −x−(ψ+)−1, S(ψ±) = (ψ±)−1,

ε(x±) = 0, ε(ψ±) = 1.

 Obtain quantum toroidal algebras [Ginzburg, Kapranov, Vasserot 1995]
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Quantum toroidal gl(p) : definition

When g = gl(p), an extra parameter κ ∈ C× can be introduced. We use:

q1 = q−1κ, q2 = q−1κ−1, q3 = q2 ⇒ q1q2q3 = 1.

The algebra is formulated in terms of a central element c and 4p Drinfeld currents

x±ω (z) =
∑
k∈Z

z−kx±ω,k , ψ±ω (z) =
∑
k≥0

z∓kψ±ω,±k .

It has a second central element c̄ obtained as

q
∓ 1

2
c̄

3 =

p−1∏
ω=0

ψ±ω,0.
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Quantum toroidal gl(p) : definition

The algebraic relations read

ψ+
ω (z)x±ω′(w) = gωω′(q

±c/4
3 z/w)±1x±ω′(w)ψ±ω (z),

ψ−ω (z)x±ω′(w) = gωω′(q
∓c/4
3 z/w)±1x±ω′(w)ψ−ω (z),

[ψ±ω (z), ψ±ω′(w)] = 0, ψ+
ω,0ψ

−
ω,0 = ψ−ω,0ψ

+
ω,0 = 1

ψ+
ω (z)ψ−ω′(w) =

gωω′(q
c/2
3 z/w)

gωω′(q
−c/2
3 z/w)

ψ−ω′(w)ψ+
ω (z),

x±ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)x±ω (z),

[x+
ω (z), x−ω′(w)] =

δω,ω′

q
1/2
3 − q

−1/2
3

[
δ(q
−c/2
3 z/w)ψ+

ω (q
−c/4
3 z)− δ(q

c/2
3 z/w)ψ−ω (q

c/4
3 z)

]
,

together with the Serre relations

∑
σ∈S2

[
x±ω (zσ(1))x±ω (zσ(2))x±ω±1(w)− (q

1/2
3 + q

−1/2
3 )x±ω (zσ(1))x±ω±1(w)x±ω (zσ(2)) + x±ω±1(w)x±ω (zσ(1))x±ω (zσ(2))

]
= 0.
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Quantum toroidal gl(p) : definition

The structure functions gωω′(z) are defined as (δω,ω′ is the Kronecker delta mod p)

gωω′(z) =

(
q−1

3

1− q3z

1− q−1
3 z

)δω,ω′ (
q

1/2
3

1− q1z

1− q−1
2 z

)δω,ω′−1
(
q

1/2
3

1− q2z

1− q−1
1 z

)δω,ω′+1

Example: For p = 6,



q−1
3

1− q3z

1− q−1
3 z

q
1/2
3

1− q1z

1− q−1
2 z

0 0 0 q
1/2
3

1− q2z

1− q−1
1 z

q
1/2
3

1− q2z

1− q−1
1 z

q−1
3

1− q3z

1− q−1
3 z

q
1/2
3

1− q1z

1− q−1
2 z

0 0 0

0 q
1/2
3

1− q2z

1− q−1
1 z

q−1
3

1− q3z

1− q−1
3 z

q
1/2
3

1− q1z

1− q−1
2 z

0 0

0 0 q
1/2
3
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1 z
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3
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3 z

q
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3
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Quantum toroidal gl(p): coalgebraic structure

The algebra has the structure of a Hopf algebra with the Drinfeld coproduct

∆(x+
ω (z)) = x+

ω (z)⊗ 1 + ψ−ω (q
c(1)/4

3 z)⊗ x+
ω (q

c(1)/2

3 z),

∆(x−ω (z)) = x−ω (q
c(2)/2

3 z)⊗ ψ+
ω (q

c(2)/4

3 z) + 1⊗ x−ω (z),

∆(ψ±ω (z)) = ψ±ω (q
±c(2)/4

3 z)⊗ ψ±ω (q
∓c(1)/4

3 z),

the counit ε(x±ω (z)) = 0, ε(ψ±ω (z)) = 1, and the antipode

S(x+
ω (z)) = −ψ−ω (q

−c/4
3 z)−1x+

ω (q
−c/2
3 z), S(x−ω (z)) = −x−ω (q

−c/2
3 z)ψ+

ω (q
−c/4
3 z)−1,

S(ψ±ω (z)) = ψ±ω (z)−1.

Remarks:

F We denoted c(1) = c ⊗ 1, c(2) = 1⊗ c, and ∆(c) = c(1) + c(2), ε(c) = 0, S(c) = −c.

F We recover the Ding-Iohara-Miki algebra when p = 1.

[Ding, Iohara 1997 - Miki 2007]
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Motivation

• In applications to SUSY gauge theories, two types of representations are used.

In both representations, the following functions play a central role:

Sωω′(z) =
(1− q1z)δω,ω′−1 (1− q2z)δω,ω′+1

(1− z)δω,ω′ (1− q1q2z)δω,ω′
, gωω′(z) = q

− 1
2
Cωω′

3

Sωω′(z)

Sωω′(q3z)

• Some SUSY gauge theories observables can be constructed purely algebraically.

For quantum toroidal gl(p), theories are defined on the spacetime S1 × (C× C)�Zp.

The Zp-action (θ, z1, z2) ∈ S1 × C× C→ (θ, e2iπ/pz1, e
−2iπ/pz2) defines an orbifold.

[Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

• The Zp-action can be generalized with two integers (ν1, ν2) ∈ Zp × Zp,

(θ, z1, z2) ∈ S1 × C× C→ (θ, e2iπν1/pz1, e
2iπν2/pz2).

This deformation of the orbifold leads to (ν1, ν2)-dependent functions

Sωω′(z) =
(1− q1z)

δω,ω′−ν1 (1− q2z)
δω,ω′−ν2

(1− z)δω,ω′ (1− q1q2z)
δω,ω′−ν1−ν2

.
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Definition of the (ν1, ν2)-deformed algebra

. How is the deformation of quantum toroidal gl(p) defined?

The structure functions for the deformed algebra are defined as

gωω′(z) =
Sωω′(z)

Sω′ω(z−1)
, (ω, ω′ ∈ Zp).

The algebraic relations between currents needs to be deformed into

ψ+
ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)ψ+

ω (z),

ψ−ω (z)x−ω′(w) = gωω′(z/w)−1x−ω′(w)ψ−ω (z),

ψ−ω (z)x+
ω′(w) = gω−ν3c ω′(q

−c
3 z/w)x+

ω′(w)ψ−ω (z),

ψ+
ω (z)ψ−ω′(w) =

gωω′−ν3c(qc
3z/w)

gωω′(z/w)
ψ−ω′(w)ψ+

ω (z), [ψ±ω (z), ψ±ω′(w)] = 0,

x±ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)x±ω (z),

[x+
ω (z), x−ω′(w)] = Ω

[
δω,ω′δ(z/w)ψ+

ω (z)− δω,ω′−ν3cδ(qc
3z/w)ψ−ω+ν3c(qc

3z)
]
.

where we have introduced ν3 = −ν1 − ν2.
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gωω′(z) =
Sωω′(z)

Sω′ω(z−1)
, (ω, ω′ ∈ Zp).

The algebraic relations between currents needs to be deformed into

ψ+
ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)ψ+

ω (z),

ψ−ω (z)x−ω′(w) = gωω′(z/w)−1x−ω′(w)ψ−ω (z),

ψ−ω (z)x+
ω′(w) = gω−ν3c ω′(q

−c
3 z/w)x+

ω′(w)ψ−ω (z),

ψ+
ω (z)ψ−ω′(w) =

gωω′−ν3c(qc
3z/w)

gωω′(z/w)
ψ−ω′(w)ψ+

ω (z), [ψ±ω (z), ψ±ω′(w)] = 0,

x±ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)x±ω (z),

[x+
ω (z), x−ω′(w)] = Ω

[
δω,ω′δ(z/w)ψ+

ω (z)− δω,ω′−ν3cδ(qc
3z/w)ψ−ω+ν3c(qc

3z)
]
.

where we have introduced ν3 = −ν1 − ν2.
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Important remarks

The Cartan currents now contain some zero modes a±ω,0,

ψ±ω (z) = z∓a±ω,0
∑
k≥0

z∓kψ±ω,±k .

The algebra does not quite reduce to quantum toroidal gl(p) as ν1 = −ν2 = 1.

The coincidence between shifts in the arguments q±c
3 z and indices ω± ν3c follows

from the definition of the Zp-action in the gauge theory.

Well defined only if ρ(c) ∈ Z.

The comparison with quantum toroidal gl(p) leads to the following conjecture:

this algebra is equivalent to the quantum toroidal algebra built upon a

Kac-Moody algebra with the non-symmetrizable Cartan matrix

Cωω′ = δωω′ + δωω′+ν1+ν2
− δωω′+ν1

− δωω′+ν2
.
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Typically,

Cωω′ =



1 1 0 −1 0 −1 0

0 1 1 0 −1 0 −1

−1 0 1 1 0 −1 0

0 −1 0 1 1 0 −1

−1 0 −1 0 1 1 0

0 −1 0 −1 0 1 1

1 0 −1 0 −1 0 1
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Coalgebraic structure

The (ν1, ν2)-deformed algebra has the structure of a Hopf algebra with the coproduct

∆(x+
ω (z)) = x+

ω (z)⊗ 1 + ψ−ω+ν3c(1)
(q

c(1)

3 z)⊗ x+
ω (z),

∆(x−ω (z)) = x−ω (z)⊗ ψ+
ω−ν3c(1)

(q
−c(1)

3 z) + 1⊗ x−ω−ν3c(1)
(q
−c(1)

3 z),

∆(ψ+
ω (z)) = ψ+

ω (z)⊗ ψ+
ω−ν3c(1)

(q
−c(1)

3 z),

∆(ψ−ω (z)) = ψ−ω−ν3c(2)
(q
−c(2)

3 z)⊗ ψ−ω−ν3c(1)
(q
−c(1)

3 z),

the counit ε(x±ω (z)) = 0, ε(ψ±ω (z)) = 1, and the antipode

S(x+
ω (z)) = −ψ−ω+ν3c(qc

3z)−1x+
ω (z), S(x−ω (z)) = −x−ω+ν3c(qc

3z)ψ+
ω+ν3c(qc

3z)−1,

S(ψ+
ω (z)) = ψ+

ω+ν3c(qc
3z)−1, S(ψ−ω (z)) = ψ−ω+2ν3c

(q2c
3 z)−1,

The coproduct has been twisted to make manifest the coincidence between shifts in

arguments and indices.
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Vertical representations

• Deform the highest weight modules of quantum toroidal gl(p)

(analogous to finite dimensional representations of quantum affine algebras)

[Feigin, Jimbo, Miwa, Mukhin 2012]

• Levels ρV (c) = 0, ρV (c̄) = n (⇒ ψ+(z) and ψ−(w) commute!)

• Highest state |∅〉〉 determined by n weights v = (vα)nα=1 and n colors cα ∈ Zp.

• The action of the Cartan reads

ψ±ω (z−1) |∅〉〉 =

[
pω−ν3 (q

−1/2
3 z)

pω(q
1/2
3 z)

]
∓

|∅〉〉, pω(z) =
n∏
α=1

(1− zq
−1/2
3 vα)δcα,ω ,

where pω(z) is the Drinfeld polynomial and [f (z)]± denotes an expansion of f (z) in

powers of z∓1.
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Vertical representations

• Vertical modules have a basis of states |λ〉〉 labelled by n-tuples Young diagrams λ.

To each box = (α, i , j) ∈ λ of coordinates (i , j) ∈ λ(α), we associate:

a position χ = vαq
i−1
1 qj−1

2 ∈ C×,

a color c( ) = cα + (i − 1)ν1 + (j − 1)ν2 ∈ Zp.

• The action of the Drinfeld currents on this basis read

ρV (x+
ω (z)) |λ〉〉 =

∑
∈Aω(λ)

δ(z/χ )Y [λ+ ]
ω (χ ) |λ + 〉〉,

ρV (x−ω (z)) |λ〉〉 =
∑
∈Rω(λ)

δ(z/χ )Y∗[λ− ]
ω+ν1+ν2

(q−1
3 χ ) |λ− 〉〉,

ρV (ψ±ω (z)) |λ〉〉 =

[
Y∗[λ]
ω+ν1+ν2

(q−1
3 z)

Y [λ]
ω (z)

]
±

|λ〉〉.

• Aω(λ)/Rω(λ) = set of boxes of color c( ) = ω that can be added/removed to λ.

• Matrix elements are written in terms of Y-observables Y [λ]
ω (z), Y∗[λ]

ω (z).

• The highest state |∅〉〉 corresponds to empty Young diagrams.
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Horizontal representations

• Deform the vertex representations of quantum toroidal gl(p). [Saito 1996]

• Levels ρH(c) = 1, ρH(c̄) = n

Representations depend on p weights uω ∈ C× and p integers nω ∈ Z.

• Formulated in terms of p coupled Heisenberg algebras with modes αω,k ,

[αω,k , αω′,l ] = kδk+lq
k/2
3

[
δωω′ + q−k

3 δω ω′−ν3
− qk

1 δω ω′+ν1
− qk

2 δω ω′+ν2

]
, (k > 0).

and the zero modes Pω(z), Qω(z) (written with 2p finite Heisenberg algebras),

Pω(z)Qω′(w) = Fωω′w
Cωω′ z−Cωω′Qω′(w)Pω(z).

with Fωω′ = (−1)δωω′ (−q3)
−δω,ω′−ν3 (−q1)

−δωω′+ν1 (−q2)
−δωω′+ν2 .

• Define the vacuum |∅〉 such that αω,k>0 |∅〉 = 0, Pω(z) |∅〉 = |∅〉.
 Standard PBW basis obtained by acting with αω,k<0 and Qω(z).



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Horizontal representations

• Deform the vertex representations of quantum toroidal gl(p). [Saito 1996]

• Levels ρH(c) = 1, ρH(c̄) = n

Representations depend on p weights uω ∈ C× and p integers nω ∈ Z.

• Formulated in terms of p coupled Heisenberg algebras with modes αω,k ,

[αω,k , αω′,l ] = kδk+lq
k/2
3

[
δωω′ + q−k

3 δω ω′−ν3
− qk

1 δω ω′+ν1
− qk

2 δω ω′+ν2

]
, (k > 0).

and the zero modes Pω(z), Qω(z) (written with 2p finite Heisenberg algebras),

Pω(z)Qω′(w) = Fωω′w
Cωω′ z−Cωω′Qω′(w)Pω(z).

with Fωω′ = (−1)δωω′ (−q3)
−δω,ω′−ν3 (−q1)

−δωω′+ν1 (−q2)
−δωω′+ν2 .

• Define the vacuum |∅〉 such that αω,k>0 |∅〉 = 0, Pω(z) |∅〉 = |∅〉.
 Standard PBW basis obtained by acting with αω,k<0 and Qω(z).



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Horizontal representations

• Deform the vertex representations of quantum toroidal gl(p). [Saito 1996]

• Levels ρH(c) = 1, ρH(c̄) = n

Representations depend on p weights uω ∈ C× and p integers nω ∈ Z.

• Formulated in terms of p coupled Heisenberg algebras with modes αω,k ,

[αω,k , αω′,l ] = kδk+lq
k/2
3

[
δωω′ + q−k

3 δω ω′−ν3
− qk

1 δω ω′+ν1
− qk

2 δω ω′+ν2

]
, (k > 0).

and the zero modes Pω(z), Qω(z) (written with 2p finite Heisenberg algebras),

Pω(z)Qω′(w) = Fωω′w
Cωω′ z−Cωω′Qω′(w)Pω(z).

with Fωω′ = (−1)δωω′ (−q3)
−δω,ω′−ν3 (−q1)

−δωω′+ν1 (−q2)
−δωω′+ν2 .

• Define the vacuum |∅〉 such that αω,k>0 |∅〉 = 0, Pω(z) |∅〉 = |∅〉.
 Standard PBW basis obtained by acting with αω,k<0 and Qω(z).



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Horizontal representations

• Deform the vertex representations of quantum toroidal gl(p). [Saito 1996]

• Levels ρH(c) = 1, ρH(c̄) = n

Representations depend on p weights uω ∈ C× and p integers nω ∈ Z.

• Formulated in terms of p coupled Heisenberg algebras with modes αω,k ,

[αω,k , αω′,l ] = kδk+lq
k/2
3

[
δωω′ + q−k

3 δω ω′−ν3
− qk

1 δω ω′+ν1
− qk

2 δω ω′+ν2

]
, (k > 0).

and the zero modes Pω(z), Qω(z) (written with 2p finite Heisenberg algebras),

Pω(z)Qω′(w) = Fωω′w
Cωω′ z−Cωω′Qω′(w)Pω(z).

with Fωω′ = (−1)δωω′ (−q3)
−δω,ω′−ν3 (−q1)

−δωω′+ν1 (−q2)
−δωω′+ν2 .

• Define the vacuum |∅〉 such that αω,k>0 |∅〉 = 0, Pω(z) |∅〉 = |∅〉.
 Standard PBW basis obtained by acting with αω,k<0 and Qω(z).



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Horizontal representations

Drinfeld currents are represented in terms of vertex operators,

ρH(x+
ω (z)) = uωz

−nωQω(z) exp

∑
k>0

zk

k
αω,−k

 exp

−
∑
k>0

z−k

k
q
−k/2
3 αω,k

 ,

ρH(x−ω (z)) = u−1
ω znωQω(z)−1Pω−ν3 (q−1

3 z) exp

−
∑
k>0

zk

k
αω,−k

 exp

∑
k>0

z−k

k
q
k/2
3 αω−ν3,k

 ,

ρH(ψ+
ω (z)) = F−1/2Pω−ν3 (q−1

3 z) exp

−
∑
k>0

z−k

k
(q
−k/2
3 αω,k − q

k/2
3 αω−ν3,k )

 ,

ρH(ψ−ω (z)) = F 1/2 uω−ν3

uω
q
nω−ν3
3 znω−nω−ν3

Qω−ν3 (q−1
3 z)

Qω(z)
Pω−ν3 (q−1

3 z)

× exp

∑
k>0

zk

k
(q−k

3 αω−ν3,−k − αω,−k )

 .
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Intertwining operators

Intertwining operators introduced as a generalization of Virasoro vertex operators.

( quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]

They were used to solve the XXZ model in relation with Uq(ŝl(2)) symmetry.

[Davies, Foda, Jimbo, Miwa, Nakayashiki 1992]

Intertwiners Φ : V ⊗ H → H and Φ∗ : H → V ⊗ H are identified with the

topological vertex used to compute the gauge theory partition functions.

[Awata, Feigin, Shiraishi, 2011]

[Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

These operators are obtained by solving the following equation:

ρH(e)Φ = Φ (ρV ⊗ ρH ∆(e)) , or
(
ρV ⊗ ρH ∆′(e)

)
Φ∗ = Φ∗ρH(e),

for every element e = x±ω (z), ψ±ω (z), c of the algebra.

(∆′ is the opposite coproduct obtained by permutation.)

H H

V

Φ

H H

V

Φ∗
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[Davies, Foda, Jimbo, Miwa, Nakayashiki 1992]

Intertwiners Φ : V ⊗ H → H and Φ∗ : H → V ⊗ H are identified with the

topological vertex used to compute the gauge theory partition functions.

[Awata, Feigin, Shiraishi, 2011]

[Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

These operators are obtained by solving the following equation:

ρH(e)Φ = Φ (ρV ⊗ ρH ∆(e)) , or
(
ρV ⊗ ρH ∆′(e)

)
Φ∗ = Φ∗ρH(e),

for every element e = x±ω (z), ψ±ω (z), c of the algebra.

(∆′ is the opposite coproduct obtained by permutation.)

H H

V

Φ

H H

V

Φ∗



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Intertwining operators

Intertwining operators introduced as a generalization of Virasoro vertex operators.

( quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]

They were used to solve the XXZ model in relation with Uq(ŝl(2)) symmetry.
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Application to gauge theories

The solutions have been found, they decompose on the vertical basis

Φ =
∑
λ

Φλ〈〈λ| , Φ∗ =
∑
λ

Φ∗λ |λ〉〉

where Φλ and Φ∗λ are vertex operators acting on horizontal modules.

We build the operator T by gluing the intertwiners Φ and Φ∗.

The gluing rules follow from the string theory realization

H

H

H

H

V

Φ

Φ∗

Along the vertical direction, gluing is done by a scalar product:

T [U(N)] =
∑
λ

Φλ ⊗ Φ∗λ : H ⊗ H → H ⊗ H

The vacuum expectation value reproduces the gauge theory partition function:

Z = (〈∅| ⊗ 〈∅|) T (|∅〉 ⊗ |∅〉) .
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Summary of the results

From the mathematics perspective:

Define a new algebra that deforms the quantum toroidal gl(p) algebra.

Show that it has the structure of a Hopf algebra.

Provide a highest weight representation on Young diagrams.

Provide the vertex representation (or level one representation).

Constuct the intertwining operators between these two.

From the physics perspective:

Define a colored topological vertex pertaining to the spacetime orbifold.

Extend the algebraic construction of SUSY gauge theories’ partitions functions.

Include the case ν1 = 1, ν2 = 0 corresponding to the insertion of a surface defect.

Construct the qq-characters of the gauge theories (other type of observable).

 Observe two inequivalent fundamental qq-characters.



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Summary of the results

From the mathematics perspective:

Define a new algebra that deforms the quantum toroidal gl(p) algebra.

Show that it has the structure of a Hopf algebra.

Provide a highest weight representation on Young diagrams.

Provide the vertex representation (or level one representation).

Constuct the intertwining operators between these two.

From the physics perspective:

Define a colored topological vertex pertaining to the spacetime orbifold.

Extend the algebraic construction of SUSY gauge theories’ partitions functions.

Include the case ν1 = 1, ν2 = 0 corresponding to the insertion of a surface defect.

Construct the qq-characters of the gauge theories (other type of observable).

 Observe two inequivalent fundamental qq-characters.



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Open questions

From the mathematics perspective:

Show that Serre relations are obeyed in both horizontal and vertical

representations.

Prove the conjectured equivalence with a quantum toroidal algebra defined upon

the Cartan matrix Cωω′ . ( quantum affine algebra?)

Look for Miki’s automorphism mapping (c, c̄)→ (−c̄, c) (S-duality).

Find more representations (MacMahon modules?) and classify them.

From the physics perspective:

Find a duality with q-deformed W-algebras  AGT-correspondence!

Construct the associated quantum integrable systems.
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Main idea

Combine different ingredients to derive a general approach to SUSY gauge theories:

I. ADHM construction

Description of the non-perturbative sector of SUSY gauge theories.

(instanton moduli space)

[Atiyah-Drinfeld-Hitchin-Manin, Kronheimer, Nakajima,...]

II. Cohomological Hall algebra

Quiver representation = set of vector spaces and linear maps.

 Associate an algebra to the quivers.

[Vasserot, Schiffmann 2012] [Rapcak, Soibelman, Yang, Zhao 2018]

III. Algebraic approach to topological strings

 Construct the intertwining operator from a Hopf algebra.

(generalized topological vertex).

 Compute amplitudes via a diagrammatic technique.

 Identify amplitudes with gauge theory observables.

. The simplest context is given by N = 2 Super Yang-Mills on R4 ' C2.
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N = 2 Super Yang-Mills on C2

N = 2 Super Yang-Mills on C2 ADHM quiver

Affine Yangian of gl(1)

(SHc algebra)

Quantum toroidal gl(1)

(Ding-Iohara-Miki algebra)

Topological vertex

Topological strings amplitudes

= gauge theory observables

(partition function, qq-character)

[ADHM]

[Vasserot, Schiffmann 2012]

q-deformation

[Awata, Feigin, Shiraishi 2011]

Diagrammatic technique
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N = 2 Super Yang-Mills on C2/Zp

Case ν1 = −ν2 = 1

N = 2 Super Yang-Mills on C2/Zp Cyclic quiver

Affine Yangian of gl(p) Quantum toroidal gl(p)

Colored topological vertex

[Chaimanowong, Foda 2018]

Topological strings amplitudes

= gauge theory observables

(partition function, qq-character)

[Nakajima]

q-deformation

[AKMMSZ 2017]

Diagrammatic technique



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Hints for a very general construction...
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General mathematical construction

Quiver representation

(brane configuration)

Cohomological Hall

algebra (COHA)
q-COHA (K-theory)

Intertwining operator

Correlators/Amplitudes

Group action

Fixed points

Tangent space

q-deformation

Coproduct

Representations

Diagrammatic technique
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. How is the algebra built out of the quiver representation?
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ADHM quiver: definition

N

K

IJ

B2B1

• Definition: N and K are vector spaces of dimension n and k.

Take B1,B2 ∈ End(K), I ∈ Hom(N,K), J ∈ Hom(K ,N) and consider:

Mk(n) = {B1,B2, I , J�µC = 0,C[B1,B2]IN = K}/GL(K),

with the moment map µC = [B1,B2] + IJ.

• Consider the action of U(1)n+2 ⊂ GL(N)× SO(4)

(h, t1, t2) ∈ U(1)n × U(1)× U(1) : (B1,B2, I , J)→ (t1B1, t2B2, Ih, t1t2h
−1J).

 The fixed points are labelled by n-tuple partitions λ = (λ(1), · · · , λ(n)).
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ADHM quiver: Nekrasov factor

• Construct the tangent space (δB1, δB2, δI , δJ)

 modulo δµC = 0 and gl(K) transformation.

• At a fixed point λ, the tangent space supports an action of U(1)n+2.

 We determine the character Xλ of this action.

• The Nekrasov factor is obtained by taking the plethystic exponential,

N(v ,λ|v ′,λ′) = I[X ] =
∏
∈λ
∈λ′

S(χ /χ )×
n∏
α=1

∏
∈λ′

(
1− vα

χ

)
×
∏
∈λ

n′∏
α=1

(
1− q1q2

χ

v ′α

)
,

with S(z) =
(1− q1z)(1− q2z)

(1− z)(1− q1q2z)
.

! For two different fixed points λ 6= λ′, need another mathematical construction.
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ADHM quiver: Y-observables

• From the Nekrasov factor, we determine the Y-observable

Y [λ](χ ) =
N(v ,λ|v ′,λ′ + )

N(v ,λ|v ′,λ′)
, Y∗[λ′](q1q2χ ) =

N(v ,λ + |v ′,λ′)
N(v ,λ|v ′,λ′)

⇒ Y [λ](z) =
n∏
α=1

(
1− vα

z

)
×
∏
∈λ

S(χ /z), Y∗[λ](z) = Y [λ](z)×
n∏
α=1

(
− z

vα

)

. Y-obervables, and the function S(z), determine the algebra!

 What happens in the case of a Zp-orbifold?



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

ADHM quiver: Y-observables

• From the Nekrasov factor, we determine the Y-observable

Y [λ](χ ) =
N(v ,λ|v ′,λ′ + )

N(v ,λ|v ′,λ′)
, Y∗[λ′](q1q2χ ) =

N(v ,λ + |v ′,λ′)
N(v ,λ|v ′,λ′)

⇒ Y [λ](z) =
n∏
α=1

(
1− vα

z

)
×
∏
∈λ

S(χ /z), Y∗[λ](z) = Y [λ](z)×
n∏
α=1

(
− z

vα

)

. Y-obervables, and the function S(z), determine the algebra!

 What happens in the case of a Zp-orbifold?



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

ADHM quiver: Y-observables

• From the Nekrasov factor, we determine the Y-observable

Y [λ](χ ) =
N(v ,λ|v ′,λ′ + )

N(v ,λ|v ′,λ′)
, Y∗[λ′](q1q2χ ) =

N(v ,λ + |v ′,λ′)
N(v ,λ|v ′,λ′)

⇒ Y [λ](z) =
n∏
α=1

(
1− vα

z

)
×
∏
∈λ

S(χ /z), Y∗[λ](z) = Y [λ](z)×
n∏
α=1

(
− z

vα

)

. Y-obervables, and the function S(z), determine the algebra!

 What happens in the case of a Zp-orbifold?



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Cyclic quiver

• We consider first the standard Zp-action ν1 = −ν2 = 1.

• We can take the long path and consider the cyclic quiver

KO

K1

K2

Kp−1

N0

N1

N2

Np−1

with fixed point given by colored partitions, c( ) = cα + i − j ∈ Zp for = (i , j) ∈ λ(α).

 Or we can take a shortcut and consider the Zp-invariant character!!!
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(ν1, ν2)-deformed quiver

• For the (ν1, ν2)-deformed Zp-action, the coloring is

c( ) = cα + (i − 1)ν1 + (j − 1)ν2 ∈ Zp, for = (i , j) ∈ λ(α)

• Projecting the character on its Zp-invariant part, we deduce

N(v ,λ|v ′,λ′) =
∏
∈λ
∈λ′

Sc( )c( )(χ /χ )×
∏
∈λ

∏
α∈Cc( )+ν1+ν2

(n′)

(
1− χ

q3v ′α

)

×
∏
∈λ′

∏
α∈Cc( )(n)

(
1− vα

χ

)
,

Sωω′(z) =
(1− q1z)

δω,ω′−ν1 (1− q2z)
δω,ω′−ν2

(1− z)δω,ω′ (1− q1q2z)
δω,ω′−ν1−ν2

.

• With the same method as before, we derive the Y-observables Y [λ]
ω (z) and Y∗[λ]

ω (z).

 Now, we have all the information needed to define our algebra!!!
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Construction of the algebra

. The algebra is determined following these few steps:

I. Define an action on states parameterized by fixed points

The matrix elements are given by the Y-observables.

 This is the vertical representation = Cohomological Hall algebra action.

II. Define a set of vertex operators

Impose normal-ordering relations of the type

ηω(z)ηω′(w) = Sωω′(z/w) : ηω(z)ηω′(w) : .

 They will form the horizontal representation.

III. Combine these two actions to form the algebra

Vertical/Horizontal are identified with representations of level c = 0/c = 1.

IV. Add a co-algebraic structure

 Show that it defines a Hopf algebra.
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 This is the vertical representation = Cohomological Hall algebra action.

II. Define a set of vertex operators

Impose normal-ordering relations of the type

ηω(z)ηω′(w) = Sωω′(z/w) : ηω(z)ηω′(w) : .
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Open questions

We can associate an algebra to a quiver representation, but can we do more?

When does the full AFS construction of the topological vertex holds?

(Non-symplectic quivers? How to combine x+, ψ− and x−, ψ+ Borel

subalgebras?)

What is the interpretation of the amplitudes?

(topological invariant? branes configuration?)

Can we further associate an integrable system? W-algebras? symmetric

polynomials?

 Consider more general examples...

Quiver with fixed points labelled by half-partitions? [in progress...]
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Conclusion

Supersymmetric gauge theories offer a new horizon for

the study of quantum groups, guiding our exploration of

quantum toroidal algebras.

Thank you !!!



Introduction Quantum toroidal algebras Deformation of quantum toroidal gl(p) Representations Perspectives Quiver

Conclusion

Supersymmetric gauge theories offer a new horizon for

the study of quantum groups, guiding our exploration of

quantum toroidal algebras.

Thank you !!!


	Introduction
	Quantum toroidal algebras
	Deformation of quantum toroidal gl(p)
	Representations and application to gauge theories
	Perspectives
	General approach to quiver representations

