Introd	luction
•0	

Deformation of quantum toroidal gl(p) 00000

Representations

Perspectives

Quiver 000000 000000 00

New quantum toroidal algebras from supersymmetric gauge theories

Jean-Emile Bourgine

Korea Institute for Advanced Study

New trends in Integrable Systems Osaka City University 2019-09-14

JEB, Saebyeok Jeong [arXiv:1906.01625]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
0.	000000	00000	000000	00	000000

What are quantum toroidal algebras?

In a nutshell

Toroidal algebras are central extensions of 2-loop algebras (= double affine algebras).

~> Quantum toroidal algebras are affine versions of quantum affine algebras.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
0●	000000	00000	000000	00	000000

What are quantum toroidal algebras?

In a nutshell

Toroidal algebras are central extensions of 2-loop algebras (= double affine algebras).

→ Quantum toroidal algebras are affine versions of quantum affine algebras.

Main applications:

- Construction of integrable systems using the Hopf algebra structure [Feigin, Jimbo, Miwa, Mukhin 2015]
- Non-perturbative symmetries of supersymmetric (SUSY) gauge theories
 From string theory realizations: (p,q)-branes web or topological strings [Awata, Feigin, Shiraishi 2011]
 - Solution Main motivation for introducing our deformation of quantum toroidal $\mathfrak{gl}(p)$.
- Correspondence with W-algebras (AGT correspondence) [Awata, Feigin, Hoshino, Kanai, Shiraishi, Yanagida 2011]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Outline

Quantum toroidal algebras

Oeformation of quantum toroidal gl(p)

4 Representations and application to gauge theories

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	00000	00000	000000	00	00000
					00000

Consider a simple Lie algebra g with Chevalley basis x_{ω}^+ , x_{ω}^- , h_{ω} ($\omega = 1 \cdots$ rank). \bigwedge Notations: $x_{\omega}^+ \equiv e_{\omega} \equiv e_{\alpha_{\omega}}$, $x_{\omega}^- \equiv f_{\omega} \equiv e_{-\alpha_{\omega}}$. Example: $\mathfrak{sl}(2)$ generators x^{\pm} , h: $[h, x^{\pm}] = \pm 2x^{\pm}$, $[x^+, x^-] = h$.

00 00000 000000 00000 00 000	Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
0000	00	00000	00000	000000	00	00000

Consider a simple Lie algebra \mathfrak{g} with Chevalley basis x_{ω}^+ , x_{ω}^- , h_{ω} ($\omega = 1 \cdots$ rank). \bigwedge Notations: $x_{\omega}^+ \equiv e_{\omega} \equiv e_{\alpha_{\omega}}$, $x_{\omega}^- \equiv f_{\omega} \equiv e_{-\alpha_{\omega}}$. Example: $\mathfrak{sl}(2)$ generators x^{\pm} , h: $[h, x^{\pm}] = \pm 2x^{\pm}$, $[x^+, x^-] = h$.

Affinization is achieved by one of two equivalent methods:

 Add an extra root to obtain a generalized Cartan matrix C_{ωω'} Example s(2): x[±]_ω, h_ω (ω = 0, 1), [h_ω, x[±]_{ω'}] = ±C_{ωω'}x[±]_{ω'}, [x⁺_ω, x⁻_{ω'}] = δ_{ωω'} h_{ω'}.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	•00000	00000	000000	00	00000
					000000

Consider a simple Lie algebra \mathfrak{g} with Chevalley basis x_{ω}^+ , x_{ω}^- , h_{ω} ($\omega = 1 \cdots$ rank). \bigwedge Notations: $x_{\omega}^+ \equiv e_{\omega} \equiv e_{\alpha_{\omega}}$, $x_{\omega}^- \equiv f_{\omega} \equiv e_{-\alpha_{\omega}}$. Example: $\mathfrak{sl}(2)$ generators x^{\pm} , h: $[h, x^{\pm}] = \pm 2x^{\pm}$, $[x^+, x^-] = h$.

Affinization is achieved by one of two equivalent methods:

- Add an extra root to obtain a generalized Cartan matrix $C_{\omega\omega'}$ Example $\widehat{\mathfrak{sl}(2)}$: x_{ω}^{\pm} , h_{ω} ($\omega = 0, 1$), $[h_{\omega}, x_{\omega'}^{\pm}] = \pm C_{\omega\omega'} x_{\omega'}^{\pm}$, $[x_{\omega}^{+}, x_{\omega'}^{-}] = \delta_{\omega\omega'} h_{\omega'}$.
- **(a)** Central extension of the loop algebra: $\mathbb{C}[t, t^{-1}] \otimes \mathfrak{g} \oplus \mathbb{C}c$. Example $\widehat{\mathfrak{sl}(2)}$: $x_k^{\pm} = t^k \otimes x^{\pm}$, $h_k = t^k \otimes h$, $[h_k, x_l^{\pm}] = \pm 2x_{k+l}^{\pm}$, $[x_k^+, x_l^-] = h_{k+l} + ck\delta_{k+l}$, $[h_k, h_l] = ck\delta_{k+l}$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	00000	00000	000000	00	00000
					00

Consider a simple Lie algebra g with Chevalley basis x_{ω}^+ , x_{ω}^- , h_{ω} ($\omega = 1 \cdots$ rank). \land Notations: $x_{\omega}^+ \equiv e_{\omega} \equiv e_{\alpha_{\omega}}$, $x_{\omega}^- \equiv f_{\omega} \equiv e_{-\alpha_{\omega}}$. Example: $\mathfrak{sl}(2)$ generators x^{\pm} , h: $[h, x^{\pm}] = \pm 2x^{\pm}$, $[x^+, x^-] = h$.

Affinization is achieved by one of two equivalent methods:

- Add an extra root to obtain a generalized Cartan matrix $C_{\omega\omega'}$ Example $\widehat{\mathfrak{sl}(2)}$: x_{ω}^{\pm} , h_{ω} ($\omega = 0, 1$), $[h_{\omega}, x_{\omega'}^{\pm}] = \pm C_{\omega\omega'} x_{\omega'}^{\pm}$, $[x_{\omega}^{+}, x_{\omega'}^{-}] = \delta_{\omega\omega'} h_{\omega'}$.
- ② Central extension of the loop algebra: $\mathbb{C}[t, t^{-1}] \otimes \mathfrak{g} \oplus \mathbb{C}c$. Example $\widehat{\mathfrak{sl}(2)}$: $x_k^{\pm} = t^k \otimes x^{\pm}$, $h_k = t^k \otimes h$, $[h_k, x_l^{\pm}] = \pm 2x_{k+l}^{\pm}$, $[x_k^+, x_l^-] = h_{k+l} + ck\delta_{k+l}$, $[h_k, h_l] = ck\delta_{k+l}$ \rightsquigarrow Introduce the currents $h(z) = \sum_{k \in \mathbb{Z}} z^{-k} h_k$, $x^{\pm}(z) = \sum_{k \in \mathbb{Z}} z^{-k} x_k^{\pm}$. $[h(z), x^{\pm}(w)] = \pm 2\delta(z/w)x^{\pm}(z)$, with $\delta(z) = \sum_{k \in \mathbb{Z}} z^k$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	•00000	00000	000000	00	00000
					00

Consider a simple Lie algebra \mathfrak{g} with Chevalley basis x_{ω}^+ , x_{ω}^- , h_{ω} ($\omega = 1 \cdots$ rank). \bigwedge Notations: $x_{\omega}^+ \equiv e_{\omega} \equiv e_{\alpha_{\omega}}$, $x_{\omega}^- \equiv f_{\omega} \equiv e_{-\alpha_{\omega}}$. Example: $\mathfrak{sl}(2)$ generators x^{\pm} , h: $[h, x^{\pm}] = \pm 2x^{\pm}$, $[x^+, x^-] = h$.

Affinization is achieved by one of two equivalent methods:

- Add an extra root to obtain a generalized Cartan matrix $C_{\omega\omega'}$ Example $\widehat{\mathfrak{sl}(2)}$: x_{ω}^{\pm} , h_{ω} ($\omega = 0, 1$), $[h_{\omega}, x_{\omega'}^{\pm}] = \pm C_{\omega\omega'} x_{\omega'}^{\pm}$, $[x_{\omega}^{\pm}, x_{\omega'}^{\pm}] = \delta_{\omega\omega'} h_{\omega'}$.
- ② Central extension of the loop algebra: $\mathbb{C}[t, t^{-1}] \otimes \mathfrak{g} \oplus \mathbb{C}c$. Example $\widehat{\mathfrak{sl}(2)}$: $x_k^{\pm} = t^k \otimes x^{\pm}$, $h_k = t^k \otimes h$, $[h_k, x_l^{\pm}] = \pm 2x_{k+l}^{\pm}$, $[x_k^+, x_l^-] = h_{k+l} + ck\delta_{k+l}$, $[h_k, h_l] = ck\delta_{k+l}$ \rightsquigarrow Introduce the currents $h(z) = \sum_{k \in \mathbb{Z}} z^{-k} h_k$, $x^{\pm}(z) = \sum_{k \in \mathbb{Z}} z^{-k} x_k^{\pm}$. $[h(z), x^{\pm}(w)] = \pm 2\delta(z/w)x^{\pm}(z)$, with $\delta(z) = \sum_{k \in \mathbb{Z}} z^k$.
- Toroidal algebras were formulated by combining these two methods.
 [Moody, Rao, Yokonuma 1990]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	00000	00000	000000	00	000000 000000 00

Quantization

SQuantization is used to define a non-trivial coalgebraic structure.

Reminder: coalgebras have a coproduct $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, a counit $\epsilon : \mathcal{A} \to \mathbb{C}$ Hopf algebra: antipode $S : \mathcal{A} \to \mathcal{A}$ such that $\nabla(S \otimes 1)\Delta = \nabla(1 \otimes S)\Delta = \epsilon$.

(~~ R-matrix, Yang-Baxter equation, quantum integrable systems,...)

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	00000	00000	000000	00	000000

Quantization

SQuantization is used to define a non-trivial coalgebraic structure.

Reminder: coalgebras have a coproduct $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, a counit $\epsilon : \mathcal{A} \to \mathbb{C}$ Hopf algebra: antipode $\mathcal{S} : \mathcal{A} \to \mathcal{A}$ such that $\nabla(\mathcal{S} \otimes 1)\Delta = \nabla(1 \otimes \mathcal{S})\Delta = \epsilon$. (\rightsquigarrow R-matrix, Yang-Baxter equation, quantum integrable systems,...)

Solution Replace the Cartan sector with operators ψ^{\pm}_{ω} in the universal envelopping algebra. A parameter $q \in \mathbb{C}^{\times}$ is also introduced.

Example $U_q(\mathfrak{sl}(2))$: generators x^{\pm} , $\psi^{\pm} = q^{\pm h}$,

$$\begin{split} \psi^{+}x^{\pm} &= q^{\pm 2}x^{\pm}\psi^{+}, \quad \psi^{-}x^{\pm} = q^{\mp 2}x^{\pm}\psi^{-}, \quad [x^{+},x^{-}] = \frac{\psi^{+} - \psi^{-}}{q - q^{-1}} \\ \Delta(x^{+}) &= x^{+} \otimes 1 + \psi^{-} \otimes x^{+}, \quad \Delta(x^{-}) = 1 \otimes x^{-} + x^{-} \otimes \psi^{+}, \quad \Delta(\psi^{\pm}) = \psi^{\pm} \otimes \psi^{\pm} \\ \mathcal{S}(x^{+}) &= -(\psi^{-})^{-1}x^{+}, \quad \mathcal{S}(x^{-}) = -x^{-}(\psi^{+})^{-1}, \quad \mathcal{S}(\psi^{\pm}) = (\psi^{\pm})^{-1}, \\ \epsilon(x^{\pm}) &= 0, \quad \epsilon(\psi^{\pm}) = 1. \end{split}$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	00000	00000	000000	00	000000

Quantization

SQuantization is used to define a non-trivial coalgebraic structure.

Reminder: coalgebras have a coproduct $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, a counit $\epsilon : \mathcal{A} \to \mathbb{C}$ Hopf algebra: antipode $S : \mathcal{A} \to \mathcal{A}$ such that $\nabla(S \otimes 1)\Delta = \nabla(1 \otimes S)\Delta = \epsilon$. (\rightsquigarrow R-matrix, Yang-Baxter equation, quantum integrable systems,...)

Solution Replace the Cartan sector with operators ψ^{\pm}_{ω} in the universal envelopping algebra. A parameter $q \in \mathbb{C}^{\times}$ is also introduced.

Example $U_q(\mathfrak{sl}(2))$: generators x^{\pm} , $\psi^{\pm} = q^{\pm h}$,

$$\begin{split} \psi^{+}x^{\pm} &= q^{\pm 2}x^{\pm}\psi^{+}, \quad \psi^{-}x^{\pm} = q^{\mp 2}x^{\pm}\psi^{-}, \quad [x^{+},x^{-}] = \frac{\psi^{+} - \psi^{-}}{q - q^{-1}} \\ \Delta(x^{+}) &= x^{+} \otimes 1 + \psi^{-} \otimes x^{+}, \quad \Delta(x^{-}) = 1 \otimes x^{-} + x^{-} \otimes \psi^{+}, \quad \Delta(\psi^{\pm}) = \psi^{\pm} \otimes \psi^{\pm} \\ \mathcal{S}(x^{+}) &= -(\psi^{-})^{-1}x^{+}, \quad \mathcal{S}(x^{-}) = -x^{-}(\psi^{+})^{-1}, \quad \mathcal{S}(\psi^{\pm}) = (\psi^{\pm})^{-1}, \\ \epsilon(x^{\pm}) &= 0, \quad \epsilon(\psi^{\pm}) = 1. \end{split}$$

Obtain quantum toroidal algebras [Ginzburg, Kapranov, Vasserot 1995]

oduction	Quantum toroidal algebras	Deformation (
	000000	00000

eformation of quantum toroidal gl(p)

Representations

Perspectives

Quiver 000000 000000 00

Quantum toroidal $\mathfrak{gl}(p)$: definition

When $\mathfrak{g} = \mathfrak{gl}(p)$, an extra parameter $\kappa \in \mathbb{C}^{\times}$ can be introduced. We use:

$$q_1=q^{-1}\kappa, \quad q_2=q^{-1}\kappa^{-1}, \quad q_3=q^2 \quad \Rightarrow \quad q_1q_2q_3=1.$$

The algebra is formulated in terms of a central element c and 4p Drinfeld currents

$$x^{\pm}_{\omega}(z) = \sum_{k \in \mathbb{Z}} z^{-k} x^{\pm}_{\omega,k}, \quad \psi^{\pm}_{\omega}(z) = \sum_{k \ge 0} z^{\mp k} \psi^{\pm}_{\omega,\pm k}.$$

It has a second central element \bar{c} obtained as

$$q_3^{\pm \frac{1}{2}ar{c}} = \prod_{\omega=0}^{p-1} \psi_{\omega,0}^{\pm}.$$

Intro	odu	ctic	n
00			

Deformation of quantum toroidal gl(p) 00000 Representations

Perspectives

Quiver 000000 000000 00

Quantum toroidal $\mathfrak{gl}(p)$: definition

The algebraic relations read

$$\begin{split} \psi_{\omega}^{+}(z) x_{\omega'}^{\pm}(w) &= g_{\omega\omega'}(q_{3}^{\pm c/4} z/w)^{\pm 1} x_{\omega'}^{\pm}(w) \psi_{\omega}^{\pm}(z), \\ \psi_{\omega}^{-}(z) x_{\omega'}^{\pm}(w) &= g_{\omega\omega'}(q_{3}^{\mp c/4} z/w)^{\pm 1} x_{\omega'}^{\pm}(w) \psi_{\omega}^{-}(z), \\ [\psi_{\omega}^{\pm}(z), \psi_{\omega'}^{\pm}(w)] &= 0, \quad \psi_{\omega,0}^{+} \psi_{\omega,0}^{-} = \psi_{\omega,0}^{-} \psi_{\omega,0}^{+} = 1 \\ \psi_{\omega}^{+}(z) \psi_{\omega'}^{-}(w) &= \frac{g_{\omega\omega'}(q_{3}^{c/2} z/w)}{g_{\omega\omega'}(q_{3}^{-c/2} z/w)} \psi_{\omega'}^{-}(w) \psi_{\omega}^{+}(z), \\ x_{\omega}^{\pm}(z) x_{\omega'}^{\pm}(w) &= g_{\omega\omega'}(z/w)^{\pm 1} x_{\omega'}^{\pm}(w) x_{\omega}^{\pm}(z), \\ [x_{\omega}^{+}(z), x_{\omega'}^{-}(w)] &= \frac{\delta_{\omega,\omega'}}{q_{3}^{1/2} - q_{3}^{-1/2}} \left[\delta(q_{3}^{-c/2} z/w) \psi_{\omega}^{+}(q_{3}^{-c/4} z) - \delta(q_{3}^{c/2} z/w) \psi_{\omega}^{-}(q_{3}^{c/4} z) \right], \end{split}$$

together with the Serre relations

 $\sum_{\sigma \in S_2} \left[x_{\omega}^{\pm}(z_{\sigma(1)}) x_{\omega}^{\pm}(z_{\sigma(2)}) x_{\omega\pm1}^{\pm}(w) - (q_3^{1/2} + q_3^{-1/2}) x_{\omega}^{\pm}(z_{\sigma(1)}) x_{\omega\pm1}^{\pm}(w) x_{\omega}^{\pm}(z_{\sigma(2)}) + x_{\omega\pm1}^{\pm}(w) x_{\omega}^{\pm}(z_{\sigma(1)}) x_{\omega}^{\pm}(z_{\sigma(2)}) \right] = 0.$

Intro	oduc	tio	1
00			

Deformation of quantum toroidal gl(p) 00000 Representations

Perspectives

Quiver 000000 000000

Quantum toroidal $\mathfrak{gl}(p)$: definition

The structure functions $g_{\omega\omega'}(z)$ are defined as $(\delta_{\omega,\omega'}$ is the Kronecker delta mod p)

$$g_{\omega\omega'}(z) = \left(q_3^{-1} \frac{1 - q_3 z}{1 - q_3^{-1} z}\right)^{\delta_{\omega,\omega'}} \left(q_3^{1/2} \frac{1 - q_1 z}{1 - q_2^{-1} z}\right)^{\delta_{\omega,\omega'-1}} \left(q_3^{1/2} \frac{1 - q_2 z}{1 - q_1^{-1} z}\right)^{\delta_{\omega,\omega'+1}}$$

Example: For p = 6,

Intro	odu	ctic	n
00			

Deformation of quantum toroidal gl(p) 00000

Representations

Perspectives

Quiver 000000 000000 00

Quantum toroidal $\mathfrak{gl}(p)$: coalgebraic structure

The algebra has the structure of a Hopf algebra with the Drinfeld coproduct

$$\begin{split} &\Delta(x_{\omega}^{+}(z)) = x_{\omega}^{+}(z) \otimes 1 + \psi_{\omega}^{-}(q_{3}^{c_{(1)}/4}z) \otimes x_{\omega}^{+}(q_{3}^{c_{(1)}/2}z), \\ &\Delta(x_{\omega}^{-}(z)) = x_{\omega}^{-}(q_{3}^{c_{(2)}/2}z) \otimes \psi_{\omega}^{+}(q_{3}^{c_{(2)}/4}z) + 1 \otimes x_{\omega}^{-}(z), \\ &\Delta(\psi_{\omega}^{\pm}(z)) = \psi_{\omega}^{\pm}(q_{3}^{\pm c_{(2)}/4}z) \otimes \psi_{\omega}^{\pm}(q_{3}^{\mp c_{(1)}/4}z), \end{split}$$

the counit $\epsilon(x^{\pm}_{\omega}(z))=$ 0, $\epsilon(\psi^{\pm}_{\omega}(z))=$ 1, and the antipode

$$\begin{split} \mathcal{S}(x_{\omega}^{+}(z)) &= -\psi_{\omega}^{-}(q_{3}^{-c/4}z)^{-1}x_{\omega}^{+}(q_{3}^{-c/2}z), \quad \mathcal{S}(x_{\omega}^{-}(z)) = -x_{\omega}^{-}(q_{3}^{-c/2}z)\psi_{\omega}^{+}(q_{3}^{-c/4}z)^{-1}, \\ \mathcal{S}(\psi_{\omega}^{\pm}(z)) &= \psi_{\omega}^{\pm}(z)^{-1}. \end{split}$$

Remarks:

★ We denoted $c_{(1)} = c \otimes 1$, $c_{(2)} = 1 \otimes c$, and $\Delta(c) = c_{(1)} + c_{(2)}$, $\epsilon(c) = 0$, S(c) = -c. ★ We recover the Ding-Iohara-Miki algebra when p = 1. [Ding, Iohara 1997 - Miki 2007]

ntroduction	(
00	0

Deformation of quantum toroidal gl(p)

Representations

Perspectives

Quiver 000000 000000

Outline

- Quantum toroidal algebras
- 3 Deformation of quantum toroidal gl(p)
- 4 Representations and application to gauge theories
- 5 Perspectives
- 6 General approach to quiver representations

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Motivation

• In applications to SUSY gauge theories, two types of representations are used. In both representations, the following functions play a central role:

$$S_{\omega\omega'}(z) = \frac{(1-q_1z)^{\delta_{\omega,\omega'-1}}(1-q_2z)^{\delta_{\omega,\omega'+1}}}{(1-z)^{\delta_{\omega,\omega'}}(1-q_1q_2z)^{\delta_{\omega,\omega'}}}, \quad g_{\omega\omega'}(z) = q_3^{-\frac{1}{2}C_{\omega\omega'}}\frac{S_{\omega\omega'}(z)}{S_{\omega\omega'}(q_3z)}$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	●0000	000000	00	000000

Motivation

• In applications to SUSY gauge theories, two types of representations are used. In both representations, the following functions play a central role:

$$S_{\omega\omega'}(z) = \frac{(1-q_1 z)^{\delta_{\omega,\omega'-1}} (1-q_2 z)^{\delta_{\omega,\omega'+1}}}{(1-z)^{\delta_{\omega,\omega'}} (1-q_1 q_2 z)^{\delta_{\omega,\omega'}}}, \quad g_{\omega\omega'}(z) = q_3^{-\frac{1}{2}C_{\omega\omega'}} \frac{S_{\omega\omega'}(z)}{S_{\omega\omega'}(q_3 z)}$$

• Some SUSY gauge theories observables can be constructed purely algebraically. For quantum toroidal $\mathfrak{gl}(p)$, theories are defined on the spacetime $S^1 \times (\mathbb{C} \times \mathbb{C})/\mathbb{Z}_p$. The \mathbb{Z}_p -action $(\theta, z_1, z_2) \in S^1 \times \mathbb{C} \times \mathbb{C} \to (\theta, e^{2i\pi/p} z_1, e^{-2i\pi/p} z_2)$ defines an orbifold. [Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	●0000	000000	00	000000

Motivation

• In applications to SUSY gauge theories, two types of representations are used. In both representations, the following functions play a central role:

$$S_{\omega\omega'}(z) = rac{(1-q_1z)^{\delta_{\omega,\omega'-1}}(1-q_2z)^{\delta_{\omega,\omega'+1}}}{(1-z)^{\delta_{\omega,\omega'}}(1-q_1q_2z)^{\delta_{\omega,\omega'}}}, \quad g_{\omega\omega'}(z) = q_3^{-rac{1}{2}C_{\omega\omega'}}rac{S_{\omega\omega'}(z)}{S_{\omega\omega'}(q_3z)}$$

• Some SUSY gauge theories observables can be constructed purely algebraically. For quantum toroidal $\mathfrak{gl}(p)$, theories are defined on the spacetime $S^1 \times (\mathbb{C} \times \mathbb{C}) / \mathbb{Z}_p$. The \mathbb{Z}_p -action $(\theta, z_1, z_2) \in S^1 \times \mathbb{C} \times \mathbb{C} \to (\theta, e^{2i\pi/p} z_1, e^{-2i\pi/p} z_2)$ defines an orbifold. [Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

• The \mathbb{Z}_p -action can be generalized with two integers $(
u_1,
u_2) \in \mathbb{Z}_p imes \mathbb{Z}_p$,

$$(\theta, z_1, z_2) \in S^1 \times \mathbb{C} \times \mathbb{C} \to (\theta, e^{2i\pi\nu_1/p}z_1, e^{2i\pi\nu_2/p}z_2).$$

This deformation of the orbifold leads to (ν_1, ν_2) -dependent functions

$$S_{\omega\omega'}(z) = \frac{(1-q_1 z)^{\delta_{\omega,\omega'-\nu_1}}(1-q_2 z)^{\delta_{\omega,\omega'-\nu_2}}}{(1-z)^{\delta_{\omega,\omega'}}(1-q_1 q_2 z)^{\delta_{\omega,\omega'-\nu_1-\nu_2}}}$$

Introduction 00 Quantum toroidal algebras

Deformation of quantum toroidal gl(p)00000 Representations

Perspectives

Quiver 000000 000000 00

Definition of the (u_1, u_2)-deformed algebra

 \mathbb{S} How is the deformation of quantum toroidal $\mathfrak{gl}(p)$ defined?

Introduction 00)uantum toroidal algebras

Deformation of quantum toroidal gl(p)00000 Representations

Perspectives

Quiver 000000 000000 00

Definition of the (ν_1, ν_2) -deformed algebra

Solution How is the deformation of quantum toroidal $\mathfrak{gl}(p)$ defined?

The structure functions for the deformed algebra are defined as

$$g_{\omega\omega'}(z)=rac{S_{\omega\omega'}(z)}{S_{\omega'\omega}(z^{-1})}, \quad (\omega,\omega'\in\mathbb{Z}_p).$$

The algebraic relations between currents needs to be deformed into

$$\begin{split} \psi_{\omega}^{+}(z)x_{\omega'}^{\pm}(w) &= g_{\omega\omega'}(z/w)^{\pm 1}x_{\omega'}^{\pm}(w)\psi_{\omega}^{+}(z), \\ \psi_{\omega}^{-}(z)x_{\omega'}^{-}(w) &= g_{\omega\omega'}(z/w)^{-1}x_{\omega'}^{-}(w)\psi_{\omega}^{-}(z), \\ \psi_{\omega}^{-}(z)x_{\omega'}^{+}(w) &= g_{\omega-\nu_{3}c} \omega'(q_{3}^{-c}z/w)x_{\omega'}^{+}(w)\psi_{\omega}^{-}(z), \\ \psi_{\omega}^{+}(z)\psi_{\omega'}^{-}(w) &= \frac{g_{\omega\omega'-\nu_{3}c}(q_{3}^{c}z/w)}{g_{\omega\omega'}(z/w)}\psi_{\omega'}^{-}(w)\psi_{\omega}^{+}(z), \quad [\psi_{\omega}^{\pm}(z),\psi_{\omega'}^{\pm}(w)] = 0, \\ x_{\omega}^{\pm}(z)x_{\omega'}^{\pm}(w) &= g_{\omega\omega'}(z/w)^{\pm 1}x_{\omega'}^{\pm}(w)x_{\omega}^{\pm}(z), \\ [x_{\omega}^{+}(z),x_{\omega'}^{-}(w)] &= \Omega\left[\delta_{\omega,\omega'}\delta(z/w)\psi_{\omega}^{+}(z) - \delta_{\omega,\omega'-\nu_{3}c}\delta(q_{3}^{c}z/w)\psi_{\omega+\nu_{3}c}^{-}(q_{3}^{c}z)\right] \end{split}$$

where we have introduced $\nu_3 = -\nu_1 - \nu_2$.

1	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Represe
	000000	0000	0000

Representations

Perspectives

Quiver 000000 000000 00

Important remarks

$$\psi^\pm_\omega(z)=z^{\mp a^\pm_{\omega,0}}\sum_{k\geq 0}z^{\mp k}\psi^\pm_{\omega,\pm k}.$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	0000	000000	00	000000
					00000

• The Cartan currents now contain some zero modes $a_{\omega,0}^{\pm}$,

$$\psi^{\pm}_{\omega}(z) = z^{\mp a^{\pm}_{\omega,0}} \sum_{k \ge 0} z^{\mp k} \psi^{\pm}_{\omega,\pm k}.$$

• The algebra does not quite reduce to quantum toroidal $\mathfrak{gl}(p)$ as $\nu_1 = -\nu_2 = 1$.

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

$$\psi^{\pm}_{\omega}(z) = z^{\mp s^{\pm}_{\omega,0}} \sum_{k\geq 0} z^{\mp k} \psi^{\pm}_{\omega,\pm k}.$$

- The algebra does not quite reduce to quantum toroidal $\mathfrak{gl}(p)$ as $\nu_1 = -\nu_2 = 1$.
- The coincidence between shifts in the arguments q₃^{±c}z and indices ω ± ν₃c follows from the definition of the ℤ_p-action in the gauge theory.

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

$$\psi^\pm_\omega(z)=z^{\mp a^\pm_{\omega,0}}\sum_{k\geq 0}z^{\mp k}\psi^\pm_{\omega,\pm k}.$$

- The algebra does not quite reduce to quantum toroidal $\mathfrak{gl}(p)$ as $\nu_1 = -\nu_2 = 1$.
- The coincidence between shifts in the arguments q₃^{±c}z and indices ω ± ν₃c follows from the definition of the ℤ_ρ-action in the gauge theory.
- Well defined only if $\rho(c) \in \mathbb{Z}$.

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

$$\psi^{\pm}_{\omega}(z) = z^{\mp s^{\pm}_{\omega,0}} \sum_{k\geq 0} z^{\mp k} \psi^{\pm}_{\omega,\pm k}.$$

- The algebra does not quite reduce to quantum toroidal $\mathfrak{gl}(p)$ as $\nu_1 = -\nu_2 = 1$.
- The coincidence between shifts in the arguments q₃^{±c}z and indices ω ± ν₃c follows from the definition of the Z_p-action in the gauge theory.
- Well defined only if $\rho(c) \in \mathbb{Z}$.
- The comparison with quantum toroidal gl(p) leads to the following conjecture: this algebra is equivalent to the quantum toroidal algebra built upon a Kac-Moody algebra with the non-symmetrizable Cartan matrix

$$C_{\omega\omega'} = \delta_{\omega\omega'} + \delta_{\omega\omega'+\nu_1+\nu_2} - \delta_{\omega\omega'+\nu_1} - \delta_{\omega\omega'+\nu_2}.$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	00000

Typically,

$$C_{\omega\omega'}=egin{pmatrix} 1&1&0&-1&0&-1&0\ 0&1&1&0&-1&0&-1\ -1&0&1&1&0&-1&0\ 0&-1&0&1&1&0&-1\ -1&0&-1&0&1&1&1\ -1&0&-1&0&-1&0&1&1\ 1&0&-1&0&-1&0&1&1\ 1&0&-1&0&-1&0&1\end{pmatrix}$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	0000	000000	00	000000

Coalgebraic structure

The (ν_1, ν_2) -deformed algebra has the structure of a Hopf algebra with the coproduct

$$\begin{split} &\Delta(x_{\omega}^{+}(z)) = x_{\omega}^{+}(z) \otimes 1 + \psi_{\omega+\nu_{3}c_{(1)}}^{-}(q_{3}^{c_{(1)}}z) \otimes x_{\omega}^{+}(z), \\ &\Delta(x_{\omega}^{-}(z)) = x_{\omega}^{-}(z) \otimes \psi_{\omega-\nu_{3}c_{(1)}}^{+}(q_{3}^{-c_{(1)}}z) + 1 \otimes x_{\omega-\nu_{3}c_{(1)}}^{-}(q_{3}^{-c_{(1)}}z), \\ &\Delta(\psi_{\omega}^{+}(z)) = \psi_{\omega}^{+}(z) \otimes \psi_{\omega-\nu_{3}c_{(1)}}^{+}(q_{3}^{-c_{(1)}}z), \\ &\Delta(\psi_{\omega}^{-}(z)) = \psi_{\omega-\nu_{3}c_{(2)}}^{-}(q_{3}^{-c_{(2)}}z) \otimes \psi_{\omega-\nu_{3}c_{(1)}}^{-}(q_{3}^{-c_{(1)}}z), \end{split}$$

the counit $\epsilon(x^{\pm}_{\omega}(z))=$ 0, $\epsilon(\psi^{\pm}_{\omega}(z))=$ 1, and the antipode

$$\begin{split} \mathcal{S}(x_{\omega}^{+}(z)) &= -\psi_{\omega+\nu_{3}c}^{-}(q_{3}^{c}z)^{-1}x_{\omega}^{+}(z), \quad \mathcal{S}(x_{\omega}^{-}(z)) = -x_{\omega+\nu_{3}c}^{-}(q_{3}^{c}z)\psi_{\omega+\nu_{3}c}^{+}(q_{3}^{c}z)^{-1}, \\ \mathcal{S}(\psi_{\omega}^{+}(z)) &= \psi_{\omega+\nu_{3}c}^{+}(q_{3}^{c}z)^{-1}, \quad \mathcal{S}(\psi_{\omega}^{-}(z)) = \psi_{\omega+2\nu_{3}c}^{-}(q_{3}^{c}z)^{-1}, \end{split}$$

The coproduct has been twisted to make manifest the coincidence between shifts in arguments and indices.

00		

Deformation of quantum toroidal gl(p)00000 Representations

Perspectives

Quiver 000000 000000

Outline

- Quantum toroidal algebras
- 3 Deformation of quantum toroidal gl(p)

4 Representations and application to gauge theories

- Perspectives
- 6 General approach to quiver representations

roduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
	000000	00000	•00000	00	000000

 Deform the highest weight modules of quantum toroidal gl(p) (analogous to finite dimensional representations of quantum affine algebras)
 [Feigin, Jimbo, Miwa, Mukhin 2012]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	•00000	00	000000

 Deform the highest weight modules of quantum toroidal gl(p) (analogous to finite dimensional representations of quantum affine algebras)
 [Feigin, Jimbo, Miwa, Mukhin 2012]

• Levels $\rho_V(c) = 0$, $\rho_V(\bar{c}) = n \ (\Rightarrow \psi^+(z) \text{ and } \psi^-(w) \text{ commute!})$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	•00000	00	000000

 Deform the highest weight modules of quantum toroidal gl(p) (analogous to finite dimensional representations of quantum affine algebras)
 [Feigin, Jimbo, Miwa, Mukhin 2012]

- Levels $\rho_V(c) = 0$, $\rho_V(\bar{c}) = n \ (\Rightarrow \psi^+(z) \text{ and } \psi^-(w) \text{ commute!})$
- Highest state $|\emptyset\rangle\rangle$ determined by *n* weights $v = (v_{\alpha})_{\alpha=1}^{n}$ and *n colors* $c_{\alpha} \in \mathbb{Z}_{p}$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	00000	00	000000

 Deform the highest weight modules of quantum toroidal gl(p) (analogous to finite dimensional representations of quantum affine algebras)
 [Feigin, Jimbo, Miwa, Mukhin 2012]

- Levels $\rho_V(c) = 0$, $\rho_V(\bar{c}) = n \ (\Rightarrow \psi^+(z) \text{ and } \psi^-(w) \text{ commute!})$
- Highest state $|\emptyset\rangle\rangle$ determined by *n* weights $v = (v_{\alpha})_{\alpha=1}^{n}$ and *n colors* $c_{\alpha} \in \mathbb{Z}_{p}$.
- The action of the Cartan reads

$$\psi_{\omega}^{\pm}(z^{-1})\left|\emptyset\right\rangle = \left[\frac{\rho_{\omega-\nu_{3}}(q_{3}^{-1/2}z)}{\rho_{\omega}(q_{3}^{1/2}z)}\right]_{\mp}\left|\emptyset\right\rangle , \quad \rho_{\omega}(z) = \prod_{\alpha=1}^{n}(1-zq_{3}^{-1/2}v_{\alpha})^{\delta_{c_{\alpha},\omega}},$$

where $p_{\omega}(z)$ is the Drinfeld polynomial and $[f(z)]_{\pm}$ denotes an expansion of f(z) in powers of $z^{\pm 1}$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	00000	00	000000

• Vertical modules have a basis of states $|\lambda\rangle\rangle$ labelled by *n*-tuples Young diagrams λ . To each box $\Box = (\alpha, i, j) \in \lambda$ of coordinates $(i, j) \in \lambda^{(\alpha)}$, we associate:

- a position $\chi_{\square} = v_{lpha} q_1^{i-1} q_2^{i-1} \in \mathbb{C}^{ imes}$,
- a color $c(\Box) = c_{\alpha} + (i-1)\nu_1 + (j-1)\nu_2 \in \mathbb{Z}_p$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	00000	00	00000

• Vertical modules have a basis of states $|\lambda\rangle\rangle$ labelled by *n*-tuples Young diagrams λ . To each box $\Box = (\alpha, i, j) \in \lambda$ of coordinates $(i, j) \in \lambda^{(\alpha)}$, we associate:

- a position $\chi_{\square} = v_{lpha} q_1^{i-1} q_2^{j-1} \in \mathbb{C}^{ imes}$,
- a color $c(\Box) = c_{\alpha} + (i-1)\nu_1 + (j-1)\nu_2 \in \mathbb{Z}_p$.
- The action of the Drinfeld currents on this basis read

$$\rho_{V}(x_{\omega}^{+}(z)) |\boldsymbol{\lambda}\rangle\rangle = \sum_{\Box \in A_{\omega}(\boldsymbol{\lambda})} \delta(z/\chi_{\Box}) \mathcal{Y}_{\omega}^{[\boldsymbol{\lambda}+\Box]}(\chi_{\Box}) |\boldsymbol{\lambda}+\Box\rangle\rangle,$$

$$\rho_{V}(x_{\omega}^{-}(z)) |\boldsymbol{\lambda}\rangle\rangle = \sum_{\Box \in R_{\omega}(\boldsymbol{\lambda})} \delta(z/\chi_{\Box}) \mathcal{Y}_{\omega+\nu_{1}+\nu_{2}}^{*[\boldsymbol{\lambda}-\Box]}(q_{3}^{-1}\chi_{\Box}) |\boldsymbol{\lambda}-\Box\rangle\rangle$$

$$\rho_{V}(\psi_{\omega}^{\pm}(z)) |\boldsymbol{\lambda}\rangle\rangle = \left[\frac{\mathcal{Y}_{\omega+\nu_{1}+\nu_{2}}^{*[\boldsymbol{\lambda}]}(q_{3}^{-1}z)}{\mathcal{Y}_{\omega}^{[\boldsymbol{\omega}]}(z)}\right]_{\pm} |\boldsymbol{\lambda}\rangle\rangle.$$

• $A_{\omega}(\lambda)/R_{\omega}(\lambda) = \text{set of boxes of color } c(\Box) = \omega$ that can be added/removed to λ .

- Matrix elements are written in terms of *Y*-observables *Y*^[λ]_ω(z), *Y*^{*[λ]}_ω(z).
- The highest state $|\emptyset\rangle
 angle$ corresponds to empty Young diagrams.
| Intro | du | ctio | on |
|-------|----|------|----|
| 00 | | | |

Quantum toroidal algebras 000000 Deformation of quantum toroidal gl(p) 00000

Representations

Perspectives

000000 000000 00

Horizontal representations

• Deform the vertex representations of quantum toroidal $\mathfrak{gl}(p)$. [Saito 1996]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

• Deform the vertex representations of quantum toroidal $\mathfrak{gl}(p)$. [Saito 1996]

• Levels $\rho_H(c) = 1$, $\rho_H(\bar{c}) = n$

Representations depend on p weights $u_{\omega} \in \mathbb{C}^{\times}$ and p integers $n_{\omega} \in \mathbb{Z}$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	00000	00	00000

• Deform the vertex representations of quantum toroidal $\mathfrak{gl}(p)$. [Saito 1996]

• Levels $ho_H(c) = 1$, $ho_H(ar c) = n$

Representations depend on p weights $u_{\omega} \in \mathbb{C}^{\times}$ and p integers $n_{\omega} \in \mathbb{Z}$.

• Formulated in terms of p coupled Heisenberg algebras with modes $\alpha_{\omega,k}$,

$$\begin{split} & [\alpha_{\omega,k}, \alpha_{\omega',l}] = k \delta_{k+l} q_3^{k/2} \left[\delta_{\omega\omega'} + q_3^{-k} \delta_{\omega \ \omega' - \nu_3} - q_1^k \delta_{\omega \ \omega' + \nu_1} - q_2^k \delta_{\omega \ \omega' + \nu_2} \right], \quad (k > 0). \\ & \text{and the zero modes } P_{\omega}(z), \ Q_{\omega}(z) \text{ (written with } 2p \text{ finite Heisenberg algebras),} \end{split}$$

$$P_{\omega}(z)Q_{\omega'}(w) = F_{\omega\omega'}w^{C_{\omega\omega'}}z^{-C_{\omega\omega'}}Q_{\omega'}(w)P_{\omega}(z).$$

with $F_{\omega\omega'} = (-1)^{\delta_{\omega\omega'}} (-q_3)^{-\delta_{\omega,\omega'-\nu_3}} (-q_1)^{-\delta_{\omega\omega'+\nu_1}} (-q_2)^{-\delta_{\omega\omega'+\nu_2}}.$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	00000	00	00000

• Deform the vertex representations of quantum toroidal $\mathfrak{gl}(p)$. [Saito 1996]

• Levels $\rho_H(c) = 1$, $\rho_H(\bar{c}) = n$

Representations depend on p weights $u_{\omega} \in \mathbb{C}^{\times}$ and p integers $n_{\omega} \in \mathbb{Z}$.

• Formulated in terms of p coupled Heisenberg algebras with modes $\alpha_{\omega,k}$,

$$\begin{split} & [\alpha_{\omega,k}, \alpha_{\omega',l}] = k \delta_{k+l} q_3^{k/2} \left[\delta_{\omega\omega'} + q_3^{-k} \delta_{\omega \ \omega' - \nu_3} - q_1^k \delta_{\omega \ \omega' + \nu_1} - q_2^k \delta_{\omega \ \omega' + \nu_2} \right], \quad (k > 0). \\ & \text{and the zero modes } P_{\omega}(z), \ Q_{\omega}(z) \text{ (written with } 2p \text{ finite Heisenberg algebras),} \end{split}$$

$$P_{\omega}(z)Q_{\omega'}(w) = F_{\omega\omega'}w^{C_{\omega\omega'}}z^{-C_{\omega\omega'}}Q_{\omega'}(w)P_{\omega}(z).$$

with $F_{\omega\omega'} = (-1)^{\delta_{\omega\omega'}} (-q_3)^{-\delta_{\omega,\omega'-\nu_3}} (-q_1)^{-\delta_{\omega\omega'+\nu_1}} (-q_2)^{-\delta_{\omega\omega'+\nu_2}}.$

• Define the vacuum $|\emptyset\rangle$ such that $\alpha_{\omega,k>0} |\emptyset\rangle = 0$, $P_{\omega}(z) |\emptyset\rangle = |\emptyset\rangle$.

 \rightsquigarrow Standard PBW basis obtained by acting with $\alpha_{\omega,k<0}$ and $Q_{\omega}(z)$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Drinfeld currents are represented in terms of vertex operators,

$$\begin{split} \rho_{H}(x_{\omega}^{+}(z)) &= u_{\omega} z^{-n_{\omega}} Q_{\omega}(z) \exp\left(\sum_{k>0} \frac{z^{k}}{k} \alpha_{\omega,-k}\right) \exp\left(-\sum_{k>0} \frac{z^{-k}}{k} q_{3}^{-k/2} \alpha_{\omega,k}\right), \\ \rho_{H}(x_{\omega}^{-}(z)) &= u_{\omega}^{-1} z^{n_{\omega}} Q_{\omega}(z)^{-1} P_{\omega-\nu_{3}}(q_{3}^{-1}z) \exp\left(-\sum_{k>0} \frac{z^{k}}{k} \alpha_{\omega,-k}\right) \exp\left(\sum_{k>0} \frac{z^{-k}}{k} q_{3}^{k/2} \alpha_{\omega-\nu_{3},k}\right), \\ \rho_{H}(\psi_{\omega}^{+}(z)) &= F^{-1/2} P_{\omega-\nu_{3}}(q_{3}^{-1}z) \exp\left(-\sum_{k>0} \frac{z^{-k}}{k} (q_{3}^{-k/2} \alpha_{\omega,k} - q_{3}^{k/2} \alpha_{\omega-\nu_{3},k})\right), \\ \rho_{H}(\psi_{\omega}^{-}(z)) &= F^{1/2} \frac{u_{\omega-\nu_{3}}}{u_{\omega}} q_{3}^{n_{\omega}-\nu_{3}} z^{n_{\omega}-n_{\omega-\nu_{3}}} \frac{Q_{\omega-\nu_{3}}(q_{3}^{-1}z)}{Q_{\omega}(z)} P_{\omega-\nu_{3}}(q_{3}^{-1}z) \\ &\qquad \times \exp\left(\sum_{k>0} \frac{z^{k}}{k} (q_{3}^{-k} \alpha_{\omega-\nu_{3},-k} - \alpha_{\omega,-k})\right). \end{split}$$

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Intertwining operators introduced as a generalization of Virasoro vertex operators.
 (~~quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000 000000 00

- Intertwining operators introduced as a generalization of Virasoro vertex operators. (~~quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]
- They were used to solve the XXZ model in relation with $U_q(\mathfrak{sl}(2))$ symmetry. [Davies, Foda, Jimbo, Miwa, Nakayashiki 1992]

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

- Intertwining operators introduced as a generalization of Virasoro vertex operators. (~~quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]
- They were used to solve the XXZ model in relation with $U_q(\mathfrak{sl}(2))$ symmetry. [Davies, Foda, Jimbo, Miwa, Nakayashiki 1992]
- Intertwiners Φ : V ⊗ H → H and Φ* : H → V ⊗ H are identified with the topological vertex used to compute the gauge theory partition functions.
 [Awata, Feigin, Shiraishi, 2011]
 [Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

- Intertwining operators introduced as a generalization of Virasoro vertex operators.
 (~~quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]
- They were used to solve the XXZ model in relation with $U_q(\mathfrak{sl}(2))$ symmetry. [Davies, Foda, Jimbo, Miwa, Nakayashiki 1992]
- Intertwiners Φ : V ⊗ H → H and Φ* : H → V ⊗ H are identified with the topological vertex used to compute the gauge theory partition functions.
 [Awata, Feigin, Shiraishi, 2011]
 [Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]
- These operators are obtained by solving the following equation:

 $\rho_H(e)\Phi = \Phi\left(\rho_V \otimes \rho_H \ \Delta(e)\right), \quad \text{or} \quad \left(\rho_V \otimes \rho_H \ \Delta'(e)\right)\Phi^* = \Phi^*\rho_H(e),$

for every element $e = x_{\omega}^{\pm}(z), \psi_{\omega}^{\pm}(z), c$ of the algebra.

 $(\Delta' \text{ is the opposite coproduct obtained by permutation.})$

$$H \xrightarrow{\Phi} H \qquad H \xrightarrow{\Phi^*} H$$

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

• The solutions have been found, they decompose on the vertical basis

$$\Phi = \sum_{oldsymbol{\lambda}} \Phi_{oldsymbol{\lambda}} \langle\!\langle oldsymbol{\lambda} |\,, \quad \Phi^* = \sum_{oldsymbol{\lambda}} \Phi^*_{oldsymbol{\lambda}} \ket{oldsymbol{\lambda}}$$

where Φ_{λ} and Φ_{λ}^{*} are vertex operators acting on horizontal modules.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

• The solutions have been found, they decompose on the vertical basis

$$\Phi = \sum_{oldsymbol{\lambda}} \Phi_{oldsymbol{\lambda}} \langle\!\langle oldsymbol{\lambda} |\,, \quad \Phi^* = \sum_{oldsymbol{\lambda}} \Phi^*_{oldsymbol{\lambda}} \ket{oldsymbol{\lambda}}$$

where Φ_{λ} and Φ_{λ}^{*} are vertex operators acting on horizontal modules.

We build the operator *T* by gluing the intertwiners Φ and Φ*.
 The gluing rules follow from the string theory realization

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

• The solutions have been found, they decompose on the vertical basis

$$\Phi = \sum_{oldsymbol{\lambda}} \Phi_{oldsymbol{\lambda}} \langle\!\langle oldsymbol{\lambda} |\,, \quad \Phi^* = \sum_{oldsymbol{\lambda}} \Phi^*_{oldsymbol{\lambda}} \ket{oldsymbol{\lambda}}$$

where Φ_{λ} and Φ_{λ}^{*} are vertex operators acting on horizontal modules.

 We build the operator *T* by gluing the intertwiners Φ and Φ*. The gluing rules follow from the string theory realization

• Along the vertical direction, gluing is done by a scalar product:

$$\mathcal{T}[U(N)] = \sum_{\lambda} \Phi_{\lambda} \otimes \Phi^*_{\lambda} : \quad H \otimes H \to H \otimes H$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000
					000000

• The solutions have been found, they decompose on the vertical basis

$$\Phi = \sum_{oldsymbol{\lambda}} \Phi_{oldsymbol{\lambda}} \langle\!\langle oldsymbol{\lambda} |\,, \quad \Phi^* = \sum_{oldsymbol{\lambda}} \Phi^*_{oldsymbol{\lambda}} \ket{oldsymbol{\lambda}}$$

where Φ_{λ} and Φ_{λ}^{*} are vertex operators acting on horizontal modules.

We build the operator *T* by gluing the intertwiners Φ and Φ*.
 The gluing rules follow from the string theory realization

$$H \xrightarrow{\Phi} H$$

 $H \xrightarrow{\Phi^*} H$

• Along the vertical direction, gluing is done by a scalar product:

$$\mathcal{T}[U(N)] = \sum_{\lambda} \Phi_{\lambda} \otimes \Phi^*_{\lambda} : \quad H \otimes H \to H \otimes H$$

The vacuum expectation value reproduces the gauge theory partition function:

$$\mathcal{Z} = \left(\langle \emptyset | \otimes \langle \emptyset |
ight) \mathcal{T} \left(| \emptyset \rangle \otimes | \emptyset
angle
ight).$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Outline

Introduction

- Quantum toroidal algebras
- 3 Deformation of quantum toroidal gl(p)
- Representations and application to gauge theories

5 Perspectives

General approach to quiver representations

troduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quive
0	000000	00000	000000	•0	000

Summary of the results

From the mathematics perspective:

- Define a new algebra that *deforms* the quantum toroidal $\mathfrak{gl}(p)$ algebra.
- Show that it has the structure of a Hopf algebra.
- Provide a highest weight representation on Young diagrams.
- Provide the vertex representation (or level one representation).
- Constuct the intertwining operators between these two.

troduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
0	000000	00000	000000	•0	0000
					0000

Summary of the results

From the mathematics perspective:

- Define a new algebra that *deforms* the quantum toroidal $\mathfrak{gl}(p)$ algebra.
- Show that it has the structure of a Hopf algebra.
- Provide a highest weight representation on Young diagrams.
- Provide the vertex representation (or level one representation).
- Constuct the intertwining operators between these two.

From the physics perspective:

- Define a colored topological vertex pertaining to the spacetime orbifold.
- Extend the algebraic construction of SUSY gauge theories' partitions functions.
- Include the case $\nu_1 = 1$, $\nu_2 = 0$ corresponding to the insertion of a surface defect.
- Construct the qq-characters of the gauge theories (other type of observable).
 - \rightsquigarrow $\;$ Observe two inequivalent fundamental qq-characters.

Introduction 00	Quantum toroidal algebras 000000	Deformation of quantum toroidal gl(p) 00000	Representations 000000	Perspectives O●	Quiver 0000000 0000000
		Open questions			00

Open questions

From the mathematics perspective:

- Show that Serre relations are obeyed in both horizontal and vertical representations.
- Prove the conjectured equivalence with a quantum toroidal algebra defined upon the Cartan matrix $C_{\omega\omega'}$. (\rightsquigarrow quantum affine algebra?)
- Look for Miki's automorphism mapping $(c, \bar{c}) \rightarrow (-\bar{c}, c)$ (S-duality).
- Find more representations (MacMahon modules?) and classify them.

Introduction OO	Quantum toroidal algebras	Deformation of quantum toroidal gl(p) 00000	Representations 000000	Perspectives O•	Quiver 000000 000000 00
		Onen susstiens			

Open questions

From the mathematics perspective:

- Show that Serre relations are obeyed in both horizontal and vertical representations.
- Prove the conjectured equivalence with a quantum toroidal algebra defined upon the Cartan matrix $C_{\omega\omega'}$. (\rightsquigarrow quantum affine algebra?)
- Look for Miki's automorphism mapping $(c, \bar{c}) \rightarrow (-\bar{c}, c)$ (S-duality).
- Find more representations (MacMahon modules?) and classify them.

From the physics perspective:

- Find a duality with q-deformed W-algebras $\rightarrow \rightarrow AGT$ -correspondence!
- Construct the associated quantum integrable systems.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Outline

Introduction

- 2 Quantum toroidal algebras
- 3 Deformation of quantum toroidal gl(p)
- 4 Representations and application to gauge theories

Perspectives

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000 000000 00

Combine different ingredients to derive a general approach to SUSY gauge theories:

I. ADHM construction

Description of the non-perturbative sector of SUSY gauge theories.

(instanton moduli space)

[Atiyah-Drinfeld-Hitchin-Manin, Kronheimer, Nakajima,...]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000 000000 00

Combine different ingredients to derive a general approach to SUSY gauge theories:

I. ADHM construction

Description of the non-perturbative sector of SUSY gauge theories. (instanton moduli space) [Atiyah-Drinfeld-Hitchin-Manin, Kronheimer, Nakajima,...]

II. Cohomological Hall algebra

Quiver representation = set of vector spaces and linear maps.

 \rightsquigarrow Associate an algebra to the quivers.

[Vasserot, Schiffmann 2012] [Rapcak, Soibelman, Yang, Zhao 2018]

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000 000000 00

Combine different ingredients to derive a general approach to SUSY gauge theories:

I. ADHM construction

Description of the non-perturbative sector of SUSY gauge theories. (instanton moduli space) [Atiyah-Drinfeld-Hitchin-Manin, Kronheimer, Nakajima,...]

II. Cohomological Hall algebra

Quiver representation = set of vector spaces and linear maps.

 \rightsquigarrow Associate an algebra to the quivers.

[Vasserot, Schiffmann 2012] [Rapcak, Soibelman, Yang, Zhao 2018]

- III. Algebraic approach to topological strings
 - Construct the intertwining operator from a Hopf algebra.
 (generalized topological vertex).
 - ~> Compute amplitudes via a diagrammatic technique.
 - ---- Identify amplitudes with gauge theory observables.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	00000 000000

Combine different ingredients to derive a general approach to SUSY gauge theories:

I. ADHM construction

Description of the non-perturbative sector of SUSY gauge theories. (instanton moduli space) [Atiyah-Drinfeld-Hitchin-Manin, Kronheimer, Nakajima,...]

II. Cohomological Hall algebra

Quiver representation = set of vector spaces and linear maps.

→ Associate an algebra to the quivers.

[Vasserot, Schiffmann 2012] [Rapcak, Soibelman, Yang, Zhao 2018]

- III. Algebraic approach to topological strings
 - Construct the intertwining operator from a Hopf algebra.
 (generalized topological vertex).
 - ~> Compute amplitudes via a diagrammatic technique.
 - ---- Identify amplitudes with gauge theory observables.

So The simplest context is given by $\mathcal{N} = 2$ Super Yang-Mills on $\mathbb{R}^4 \simeq \mathbb{C}^2$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000
					000000

$\mathcal{N}=2$ Super Yang-Mills on \mathbb{C}^2

n	Quantum toroi	dal algebras	Deform
	000000		0000

Deformation of quantum toroidal gl(p) 00000 Representations

Perspectives

Quiver 0000000 000000

$\mathcal{N} = 2$ Super Yang-Mills on $\mathbb{C}^2/\mathbb{Z}_p$

Case $\nu_1 = -\nu_2 = 1$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000
					000000

Hints for a very general construction...

Introduction 00 uantum toroidal algebras 00000 Deformation of quantum toroidal gl(p) 00000 Representations

Perspectives

Quiver 0000000 0000000

General mathematical construction

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000 000000 00

Solution Solution

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: definition

Definition: N and K are vector spaces of dimension n and k.
 Take B₁, B₂ ∈ End(K), I ∈ Hom(N, K), J ∈ Hom(K, N) and consider:

$$\mathcal{M}_k(n) = \{B_1, B_2, I, J \neq \mu_{\mathbb{C}} = 0, \mathbb{C}[B_1, B_2]IN = K\}/GL(K),$$

with the moment map $\mu_{\mathbb{C}} = [B_1, B_2] + IJ$.

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: definition

Definition: N and K are vector spaces of dimension n and k.
 Take B₁, B₂ ∈ End(K), I ∈ Hom(N, K), J ∈ Hom(K, N) and consider:

$$\mathcal{M}_k(n) = \{B_1, B_2, I, J \neq \mu_{\mathbb{C}} = 0, \mathbb{C}[B_1, B_2]IN = K\}/GL(K),$$

with the moment map $\mu_{\mathbb{C}} = [B_1, B_2] + IJ$.

• Consider the action of $U(1)^{n+2} \subset GL(N) \times SO(4)$

 $(h, t_1, t_2) \in U(1)^n \times U(1) \times U(1) : (B_1, B_2, I, J) \rightarrow (t_1B_1, t_2B_2, Ih, t_1t_2h^{-1}J).$

 \rightsquigarrow The fixed points are labelled by *n*-tuple partitions $\lambda = (\lambda^{(1)}, \cdots, \lambda^{(n)})$.

ction	Quantum toroidal algebras	Deformation
	000000	00000

Deformation of quantum toroidal gl(p)

Representations

Perspectives

Quiver

ADHM quiver: Nekrasov factor

- Construct the tangent space $(\delta B_1, \delta B_2, \delta I, \delta J)$
- \rightsquigarrow modulo $\delta \mu_{\mathbb{C}} = 0$ and $\mathfrak{gl}(K)$ transformation.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: Nekrasov factor

- Construct the tangent space $(\delta B_1, \delta B_2, \delta I, \delta J)$
- \rightsquigarrow modulo $\delta \mu_{\mathbb{C}} = 0$ and $\mathfrak{gl}(K)$ transformation.
- At a fixed point λ , the tangent space supports an action of $U(1)^{n+2}$.
- \rightsquigarrow We determine the character \mathcal{X}_{λ} of this action.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: Nekrasov factor

- Construct the tangent space $(\delta B_1, \delta B_2, \delta I, \delta J)$
- \rightsquigarrow modulo $\delta \mu_{\mathbb{C}} = 0$ and $\mathfrak{gl}(K)$ transformation.
- At a fixed point λ , the tangent space supports an action of $U(1)^{n+2}$.
- \rightsquigarrow We determine the character \mathcal{X}_{λ} of this action.
- The Nekrasov factor is obtained by taking the plethystic exponential,

$$\begin{split} \mathcal{N}(\mathbf{v}, \boldsymbol{\lambda} | \mathbf{v}', \boldsymbol{\lambda}') &= \mathbb{I}[\mathcal{X}] = \prod_{\substack{\square \in \boldsymbol{\lambda} \\ \mathbf{n} \in \boldsymbol{\lambda}'}} S(\chi_{\square} / \chi_{\mathbf{n}}) \times \prod_{\alpha=1}^{n} \prod_{\square \in \boldsymbol{\lambda}'} \left(1 - \frac{v_{\alpha}}{\chi_{\square}} \right) \times \prod_{\alpha=1}^{n'} \left(1 - q_1 q_2 \frac{\chi_{\square}}{v_{\alpha}'} \right), \\ \text{with} \quad S(z) &= \frac{(1 - q_1 z)(1 - q_2 z)}{(1 - z)(1 - q_1 q_2 z)}. \end{split}$$

 \triangle For two different fixed points $\lambda \neq \lambda'$, need another mathematical construction.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: \mathcal{Y} -observables

 \bullet From the Nekrasov factor, we determine the $\mathcal Y\text{-observable}$

$$\begin{split} \mathcal{Y}^{[\lambda]}(\chi_{\Box}) &= \frac{N(\boldsymbol{v}, \boldsymbol{\lambda} | \boldsymbol{v}', \boldsymbol{\lambda}' + \Box)}{N(\boldsymbol{v}, \boldsymbol{\lambda} | \boldsymbol{v}', \boldsymbol{\lambda}')}, \quad \mathcal{Y}^{*[\lambda']}(q_1 q_2 \chi_{\Box}) = \frac{N(\boldsymbol{v}, \boldsymbol{\lambda} + \Box | \boldsymbol{v}', \boldsymbol{\lambda}')}{N(\boldsymbol{v}, \boldsymbol{\lambda} | \boldsymbol{v}', \boldsymbol{\lambda}')} \\ &\Rightarrow \quad \mathcal{Y}^{[\lambda]}(z) = \prod_{\alpha=1}^n \left(1 - \frac{v_\alpha}{z}\right) \times \prod_{\Box \in \boldsymbol{\lambda}} S(\chi_{\Box}/z), \quad \mathcal{Y}^{*[\lambda]}(z) = \mathcal{Y}^{[\lambda]}(z) \times \prod_{\alpha=1}^n \left(-\frac{z}{v_\alpha}\right) \end{split}$$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: \mathcal{Y} -observables

 \bullet From the Nekrasov factor, we determine the $\mathcal Y\text{-observable}$

$$\begin{split} \mathcal{Y}^{[\lambda]}(\chi_{\Box}) &= \frac{N(\boldsymbol{v}, \lambda | \boldsymbol{v}', \lambda' + \Box)}{N(\boldsymbol{v}, \lambda | \boldsymbol{v}', \lambda')}, \quad \mathcal{Y}^{*[\lambda']}(q_1 q_2 \chi_{\Box}) = \frac{N(\boldsymbol{v}, \lambda + \Box | \boldsymbol{v}', \lambda')}{N(\boldsymbol{v}, \lambda | \boldsymbol{v}', \lambda')} \\ \Rightarrow \quad \mathcal{Y}^{[\lambda]}(z) &= \prod_{\alpha=1}^n \left(1 - \frac{v_\alpha}{z}\right) \times \prod_{\Box \in \lambda} S(\chi_{\Box}/z), \quad \mathcal{Y}^{*[\lambda]}(z) = \mathcal{Y}^{[\lambda]}(z) \times \prod_{\alpha=1}^n \left(-\frac{z}{v_\alpha}\right) \end{split}$$

 \mathcal{V} -obervables, and the function S(z), determine the algebra!

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

ADHM quiver: \mathcal{Y} -observables

 \bullet From the Nekrasov factor, we determine the $\mathcal Y\text{-observable}$

$$\begin{aligned} \mathcal{Y}^{[\lambda]}(\chi_{\Box}) &= \frac{N(\boldsymbol{v}, \boldsymbol{\lambda} | \boldsymbol{v}', \boldsymbol{\lambda}' + \Box)}{N(\boldsymbol{v}, \boldsymbol{\lambda} | \boldsymbol{v}', \boldsymbol{\lambda}')}, \quad \mathcal{Y}^{*[\lambda']}(q_1 q_2 \chi_{\Box}) &= \frac{N(\boldsymbol{v}, \boldsymbol{\lambda} + \Box | \boldsymbol{v}', \boldsymbol{\lambda}')}{N(\boldsymbol{v}, \boldsymbol{\lambda} | \boldsymbol{v}', \boldsymbol{\lambda}')} \\ \Rightarrow \quad \mathcal{Y}^{[\lambda]}(z) &= \prod_{\alpha=1}^n \left(1 - \frac{v_\alpha}{z}\right) \times \prod_{\Box \in \boldsymbol{\lambda}} S(\chi_{\Box}/z), \quad \mathcal{Y}^{*[\lambda]}(z) = \mathcal{Y}^{[\lambda]}(z) \times \prod_{\alpha=1}^n \left(-\frac{z}{v_\alpha}\right) \end{aligned}$$

 \mathcal{V} -obervables, and the function S(z), determine the algebra!

 \rightsquigarrow What happens in the case of a \mathbb{Z}_p -orbifold?
Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Cyclic quiver

• We consider first the standard \mathbb{Z}_p -action $\nu_1 = -\nu_2 = 1$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Cyclic quiver

- We consider first the standard \mathbb{Z}_{ρ} -action $\nu_1 = -\nu_2 = 1$.
- We can take the long path and consider the cyclic quiver

with fixed point given by colored partitions, $c(\Box) = c_{\alpha} + i - j \in \mathbb{Z}_p$ for $\Box = (i, j) \in \lambda^{(\alpha)}$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	000000

Cyclic quiver

- We consider first the standard \mathbb{Z}_p -action $\nu_1 = -\nu_2 = 1$.
- We can take the long path and consider the cyclic quiver

with fixed point given by colored partitions, $c(\Box) = c_{\alpha} + i - j \in \mathbb{Z}_{p}$ for $\Box = (i, j) \in \lambda^{(\alpha)}$.

 \rightsquigarrow Or we can take a shortcut and consider the \mathbb{Z}_p -invariant character!!!

Intro	odu	ctic	n
00			

Quantum toroidal algebras 000000 Deformation of quantum toroidal gl(p)00000 Representations

Perspectives

Quiver

(ν_1, ν_2) -deformed quiver

• For the (ν_1,ν_2) -deformed \mathbb{Z}_p -action, the coloring is

 $c(\Box)=c_lpha+(i-1)
u_1+(j-1)
u_2\in\mathbb{Z}_
ho, \hspace{1em} ext{for} \hspace{1em} \Box=(i,j)\in\lambda^{(lpha)}$

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiv
00	000000	00000	000000	00	000

(ν_1, ν_2) -deformed quiver

• For the (ν_1, ν_2) -deformed \mathbb{Z}_p -action, the coloring is

Γ

 $c(\Box)=c_lpha+(i-1)
u_1+(j-1)
u_2\in\mathbb{Z}_
ho, \hspace{1em} ext{for} \hspace{1em} \Box=(i,j)\in\lambda^{(lpha)}$

• Projecting the character on its \mathbb{Z}_p -invariant part, we deduce

$$\begin{split} \mathcal{V}(\mathbf{v}, \lambda | \mathbf{v}', \lambda') &= \prod_{\substack{\square \in \lambda \\ \bullet \in \lambda'}} S_{c(\square)c(\bullet)}(\chi_{\square}/\chi_{\bullet}) \times \prod_{\substack{\square \in \lambda \\ \square \in \lambda}} \prod_{\alpha \in C_{c(\square)}+\nu_{1}+\nu_{2}}(n') \left(1 - \frac{\chi_{\square}}{q_{3}\nu_{\alpha}'}\right) \\ &\times \prod_{\substack{\square \in \lambda'}} \prod_{\alpha \in C_{c(\square)}(n)} \left(1 - \frac{\nu_{\alpha}}{\chi_{\square}}\right), \\ S_{\omega\omega'}(z) &= \frac{(1 - q_{1}z)^{\delta_{\omega,\omega'}-\nu_{1}}(1 - q_{2}z)^{\delta_{\omega,\omega'}-\nu_{2}}}{(1 - z)^{\delta_{\omega,\omega'}}(1 - q_{1}q_{2}z)^{\delta_{\omega,\omega'}-\nu_{1}-\nu_{2}}}. \end{split}$$

1

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiv
00	000000	00000	000000	00	000

(ν_1, ν_2) -deformed quiver

• For the (ν_1, ν_2) -deformed \mathbb{Z}_p -action, the coloring is

 $c(\Box)=c_lpha+(i-1)
u_1+(j-1)
u_2\in\mathbb{Z}_p, \hspace{1em} ext{for} \hspace{1em} \Box=(i,j)\in\lambda^{(lpha)}$

• Projecting the character on its \mathbb{Z}_p -invariant part, we deduce

$$\begin{split} \mathcal{N}(\boldsymbol{v},\boldsymbol{\lambda}|\boldsymbol{v}',\boldsymbol{\lambda}') &= \prod_{\substack{\square \in \boldsymbol{\lambda} \\ \boldsymbol{\blacksquare} \in \boldsymbol{\lambda}'}} S_{c(\square)c(\boldsymbol{\blacksquare})}(\chi_{\square}/\chi_{\boldsymbol{\blacksquare}}) \times \prod_{\square \in \boldsymbol{\lambda}} \prod_{\alpha \in C_{c(\square)+\nu_{1}+\nu_{2}}(n')} \left(1 - \frac{\chi_{\square}}{q_{3}v_{\alpha}'}\right) \\ &\times \prod_{\square \in \boldsymbol{\lambda}'} \prod_{\alpha \in C_{c(\square)}(n)} \left(1 - \frac{v_{\alpha}}{\chi_{\square}}\right), \\ S_{\omega\omega'}(z) &= \frac{(1 - q_{1}z)^{\delta_{\omega,\omega'}-\nu_{1}}(1 - q_{2}z)^{\delta_{\omega,\omega'}-\nu_{2}}}{(1 - z)^{\delta_{\omega,\omega'}}(1 - q_{1}q_{2}z)^{\delta_{\omega,\omega'}-\nu_{1}-\nu_{2}}}. \end{split}$$

1

• With the same method as before, we derive the \mathcal{Y} -observables $\mathcal{Y}^{[\lambda]}_{\omega}(z)$ and $\mathcal{Y}^{*[\lambda]}_{\omega}(z)$.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiv
00	000000	00000	000000	00	000

(ν_1, ν_2) -deformed quiver

• For the (ν_1, ν_2) -deformed \mathbb{Z}_p -action, the coloring is

 $c(\Box)=c_{lpha}+(i-1)
u_1+(j-1)
u_2\in\mathbb{Z}_{p}, \hspace{1em} ext{for} \hspace{1em} \Box=(i,j)\in\lambda^{(lpha)}$

• Projecting the character on its \mathbb{Z}_p -invariant part, we deduce

$$\begin{split} \mathcal{N}(\boldsymbol{v},\boldsymbol{\lambda}|\boldsymbol{v}',\boldsymbol{\lambda}') &= \prod_{\substack{\square \in \boldsymbol{\lambda} \\ \boldsymbol{\blacksquare} \in \boldsymbol{\lambda}'}} S_{c(\square)c(\boldsymbol{\blacksquare})}(\chi_{\square}/\chi_{\boldsymbol{\blacksquare}}) \times \prod_{\square \in \boldsymbol{\lambda}} \prod_{\alpha \in C_{c(\square)+\nu_{1}+\nu_{2}}(n')} \left(1 - \frac{\chi_{\square}}{q_{3}v_{\alpha}'}\right) \\ &\times \prod_{\square \in \boldsymbol{\lambda}'} \prod_{\alpha \in C_{c(\square)}(n)} \left(1 - \frac{v_{\alpha}}{\chi_{\square}}\right), \\ S_{\omega\omega'}(z) &= \frac{(1 - q_{1}z)^{\delta_{\omega,\omega'}-\nu_{1}}(1 - q_{2}z)^{\delta_{\omega,\omega'}-\nu_{2}}}{(1 - z)^{\delta_{\omega,\omega'}}(1 - q_{1}q_{2}z)^{\delta_{\omega,\omega'}-\nu_{1}-\nu_{2}}}. \end{split}$$

• With the same method as before, we derive the \mathcal{Y} -observables $\mathcal{Y}_{\omega}^{[\lambda]}(z)$ and $\mathcal{Y}_{\omega}^{*[\lambda]}(z)$. \rightarrow Now, we have all the information needed to define our algebra!!!

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations
00	000000	00000	000000

Perspective

Quiver 000000 000000

Construction of the algebra

- Some states the state of th
 - I. Define an action on states parameterized by fixed points The matrix elements are given by the \mathcal{Y} -observables.
 - \rightsquigarrow This is the vertical representation = Cohomological Hall algebra action.

troduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives
0	000000	00000	000000	00

Quiver

Construction of the algebra

- So The algebra is determined following these few steps:
 - I. Define an action on states parameterized by fixed points The matrix elements are given by the $\mathcal Y\text{-observables}.$
 - \rightsquigarrow This is the vertical representation = Cohomological Hall algebra action.
 - II. Define a set of vertex operators

Impose normal-ordering relations of the type

$$\eta_{\omega}(z)\eta_{\omega'}(w) = S_{\omega\omega'}(z/w) : \eta_{\omega}(z)\eta_{\omega'}(w) : .$$

 \rightsquigarrow They will form the horizontal representation.

ntroduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives
00	000000	00000	000000	00

Quiver 000000

Construction of the algebra

- So The algebra is determined following these few steps:
 - I. Define an action on states parameterized by fixed points The matrix elements are given by the $\mathcal Y\text{-observables}.$
 - \rightsquigarrow This is the vertical representation = Cohomological Hall algebra action.
 - II. Define a set of vertex operators

Impose normal-ordering relations of the type

$$\eta_{\omega}(z)\eta_{\omega'}(w) = S_{\omega\omega'}(z/w) : \eta_{\omega}(z)\eta_{\omega'}(w) : .$$

- → They will form the horizontal representation.
- III. Combine these two actions to form the algebra Vertical/Horizontal are identified with representations of level c = 0/c = 1.

troduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives
0	000000	00000	000000	00

Quiver

Construction of the algebra

- So The algebra is determined following these few steps:
 - I. Define an action on states parameterized by fixed points The matrix elements are given by the $\mathcal Y\text{-observables}.$
 - \rightsquigarrow This is the vertical representation = Cohomological Hall algebra action.
 - II. Define a set of vertex operators

Impose normal-ordering relations of the type

$$\eta_{\omega}(z)\eta_{\omega'}(w) = S_{\omega\omega'}(z/w) : \eta_{\omega}(z)\eta_{\omega'}(w) : .$$

- → They will form the horizontal representation.
- III. Combine these two actions to form the algebra Vertical/Horizontal are identified with representations of level c = 0/c = 1.
- IV. Add a co-algebraic structure
 - \rightsquigarrow Show that it defines a Hopf algebra.

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	00000

We can associate an algebra to a quiver representation, but can we do more?

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	
		Open questions			

We can associate an algebra to a quiver representation, but can we do more?

• When does the full AFS construction of the topological vertex holds? (Non-symplectic quivers? How to combine x^+, ψ^- and x^-, ψ^+ Borel subalgebras?)

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	
		Open questions			

We can associate an algebra to a quiver representation, but can we do more?

- When does the full AFS construction of the topological vertex holds? (Non-symplectic quivers? How to combine x^+, ψ^- and x^-, ψ^+ Borel subalgebras?)
- What is the interpretation of the amplitudes? (topological invariant? branes configuration?)

We can associate an algebra to a quiver representation, but can we do more?

- When does the full AFS construction of the topological vertex holds? (Non-symplectic quivers? How to combine x^+, ψ^- and x^-, ψ^+ Borel subalgebras?)
- What is the interpretation of the amplitudes? (topological invariant? branes configuration?)
- Can we further associate an integrable system? W-algebras? symmetric polynomials?

Introduction	Quantum toroidal algebras	Deformation of quantum toroidal gl(p)	Representations	Perspectives	Quiver
00	000000	00000	000000	00	
		Open questions			

We can associate an algebra to a quiver representation, but can we do more?

- When does the full AFS construction of the topological vertex holds? (Non-symplectic quivers? How to combine x^+, ψ^- and x^-, ψ^+ Borel subalgebras?)
- What is the interpretation of the amplitudes? (topological invariant? branes configuration?)
- Can we further associate an integrable system? W-algebras? symmetric polynomials?
- Consider more general examples... \rightarrow

Quiver with fixed points labelled by half-partitions? [in progress...]

Conclusion

Supersymmetric gauge theories offer a new horizon for the study of quantum groups, guiding our exploration of quantum toroidal algebras.

Conclusion

Supersymmetric gauge theories offer a new horizon for the study of quantum groups, guiding our exploration of quantum toroidal algebras.

Thank you !!!