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Characterizing Quantum Many-Body Systems

Complete description given by many-body state/wave-function

In practice: typically measure particular expectation values

Averages over many measurements.



A lot more info in the probability distribution of a given 
observable O in a QM state |Ψ⟩

Why should we care about these quantities?

- They can be interesting and universal 

- They are measured in cold atom experiments

PO(m) = ⟨Ψ|δ(O −m)|Ψ⟩ =
∑

n
|⟨n|Ψ⟩|2δ(λn −m)
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eigenstates of O

For this to be interesting Ο should have many distinct eigenvalues

Cf talks this morning 
by BD & JMS



Cold Atom Experiments

Probability distribution of staggered magnetization for 2D Hubbard

model at finite temperature Greiner group ‘17

- Initialize system in some initial state

- Measure mz

- Repeat
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temperature, system size and interactions in this regime21. We can study 
the effect of doping on long-range order in our experiment directly by 
reducing the density of our sample and measuring the spin structure 
factor. Within the region Ω, we add a potential offset with the digital 
micromirror device for controlled hole doping, which is expected to 
also slightly change the temperature. We deduce the hole doping δ from 
the measured single-particle density ns (Methods).

As shown in Fig. 4, the strongest magnetic correlations remain at 
q =   qAFM. Doping gradually suppresses mz

c , broadens the magnetic 
ordering peak in Sz(q) and reduces its weight. Only at δ .! 0 15 do we 
find that mz

c settles to an approximately constant, small value. This 
offset originates from the strong short-range correlations that are 
still present at large dopings (Fig. 4b). When excluding the contri-
butions of d <   2 from mz

c, this offset disappears while the qualitative 
dependence δm ( )z

c  remains approximately the same (Extended Data 
Fig. 5). This finding suggests that for the finite-size, U/t =   7.2 
Hubbard model studied here, strong magnetic correlations persist 
up to a critical hole doping δc ≈  0.15. We note that our data might 
be consistent with incommensurate magnetism, which is commonly 
observed in high-temperature cuprate superconductors30, because 
in our experiment finite-size effects and temperature broadening 
might prevent us from observing resolved peaks at wavevectors  
close to qAFM.

We have realized a quantum antiferromagnet governed by the 
two-dimensional Hubbard Hamiltonian. Our architecture makes it 
possible to vary the doping and temperature, enabling us to explore 
the Hubbard phase diagram in theoretically challenging regimes. 
Attainable parameters are predicted to be sufficient to access the 
conjectured pseudogap21 and stripe-ordered1 phases. At lower  
temperatures T/t ≈  0.05 and dopings δ ≈  0.15, theoretical work indicates  
a transition to a d-wave superconducting state1. Such temperatures 
could be achieved through advanced entropy redistribution schemes. 
Furthermore, entirely novel states of matter are within reach by aug-
menting the Hamiltonian with alternative lattice structures, artificial 
gauge fields and dipolar long-range interactions.
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Figure 3 | Full counting statistics of the staggered magnetization 
operator. a, Selected images with one spin component removed 
(chequerboard overlaid to guide the eye) show a large variation in ordering 
strength at the coldest temperature. This variation is a consequence of the 
SU(2) symmetry of the underlying Hamiltonian, which leads to different 
orientations of the staggered spin-ordering vector m̂  relative to the 
measurement axis z, as shown schematically by the spin vectors (red and 
blue arrows) relative to the axis defined by Ŝz(black arrows). b, Measured 
distributions of the staggered magnetization operator, p m( ˆ )z , are plotted at 
different temperatures T/t (histograms). We find excellent agreement with 
quantum Monte Carlo simulations of the Heisenberg model with no free 
fitting parameters (black lines). The figure is based on 2,282 experimental 
realizations.
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Figure 4 | Doping the antiferromagnet. a, We 
dope the system with holes and reduce the 
density from half-filling, with δ. ≤ ≤ .0 0 0 25
(corresponding to 0.95 ≥  ns ≥  0.73). The 
corrected staggered magnetization mz

c  settles at 
the critical hole doping δc ≈  0.15. The trajectory 
followed in this figure is shown schematically in 
the phase diagram in the inset. b, The relative 
strength of the sign-corrected spin correlations 
(− 1)iCd decreases less rapidly with hole doping at 
smaller distances (d =   1.0) than at larger 
distances (d =   3.6). For large doping, only the 
nearest-neighbour correlator is appreciable, so 
this correlation is predominantly responsible for 
the non-zero staggered magnetization away from 
the antiferromagnetic phase. c, We show the spin 
structure factor Sz(q) −  Sz(0), as in Fig. 2c, for 
each doping value. Error bars in a are standard 
deviations of the sampled mean; those in b are 
computed as in Methods. The figure is based on 
1,470 experimental realizations.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Probability distribution of “relative phase” in split 1D Bose gases
Schmiedmayer group 

’10-‘17

Other examples :



Few results available in the literature for such quantities:

•               in Luttinger liquid Gritsev/Altman/Demler/Polkovnikov ’06

Kitagawa et al ’10

Lamacraft/Fendley ‘08

Cherng & Demler ’07

Ivamov&Abanov’13


Klich ’14…

• total transverse magnetisation in GS of 
TFIM & related free fermion problems

Moreno-Cardoner et al ‘16

•total magnetization in GS of critical Ising QFT


• some numerics for GS of XXZ


• GS of Haldane-Shastry Stephan/Pollmann ‘17

∫ ℓ

0 dx eiΦ(x)
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(homogeneous systems, no currents)



What to expect on “general grounds” ?

In states with finite correlation length ξ and ξ≪ℓ we expect

We consider 

- lattice models;

- observables O	(quantized eigenvalues) that act on sub-

systems of linear size l, e.g. sub-system magnetization;

narrow, ≈ Gaussian

Cases with ξ→∞ or ξ≿ℓ will be most interesting.

(“thermodynamics”)

Need ℓ to be large-ish s.t. Ο has many distinct eigenvalues



Subsystem magnetisation in the transverse field Ising chain at T>0

Sz
u(ℓ) =

ℓ

∑
j=1

σz
j

P(u)(m) = Tr [ρ(β) δ(m − Sz
u(ℓ)] = 2∑

r∈ℤ

P(u)
w (r)δ(m − 2r) (ℓ even)

8

(a) (b)

FIG. 1: Probability distribution as a function of m for ` = 20 and several temperatures at (a) h = 0.5; (b) h = 2.

In Fig. 1 we show P (u)
w (m) for subsystem size ` = 20 and several di↵erent temperatures. We employ a log-linear plot

in order to make the deviations of the probability distributions from a Gaussian form (which would correspond to a
parabolic form) more apparent. We can see from Fig. 1 (a) that the temperature dependence for h < 1, corresponding
to the ferromagnetically ordered phase at zero temperature, is not very pronounced. In contrast we see a much
stronger temperature dependence in the paramagnetic phase, cf. Fig. 1 (b). At low temperatures the probability
distribution is as expected asymmetric as a result of the applied field and is seen to display an even/odd structure.
The latter disappears quickly as temperature is increased, whereas the asymmetry remains until the temperature
exceeds the scale set by the magnetic field.

(a) (b)

FIG. 2: Skewness as a function of ` for several values of � at (a) h = 0.5 and (b) h = 2.

(a) (b)

FIG. 3: Excess kurtosis as a function of subsystem size ` for several temperatures and (a) h = 0.5 and (b) h = 2.

In Figs 2 and 3 we show the skewness and excess kurtosis of the probability distribution as a function of subsystem

9

size ` for a range of temperatures. These are defined as the thermal expectation values
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hX2i�

#4 E

�
� 3 , X = Sz

u(`)� hSz
u(`)i� . (54)

Both skewness and excess kurtosis are non-vanishing for finite � and `, which establishes that the distribution is not
Gaussian. A very peculiar feature is that at fixed ` skewness and excess kurtosis are non-monotonic functions of the
temperature. Furthermore, we observe that at a fixed temperature they both tend to zero as the subsystem size ` is
increased. This signals that the corresponding probability distribution approaches a Gaussian. This is expected as
for large subsystem sizes the laws of thermodynamics apply and the probability distribution is then approximately
Gaussian with a standard deviation that scales as

p
`.

V. FULL COUNTING STATISTICS AFTER A QUANTUM QUENCH

We now turn to the time evolution of the characteristic function �(u,s)(�, t) after quantum quenches. We consider
two di↵erent classes of initial states:

• We initialize the system in the ground state of H(h0) and time evolve with H(h). Such transverse field quenches
have been studied in detail in the literature [40–47, 55–65].

• We initialize the system in the Néel state |"#"# . . . "#i, thus breaking translational symmetry by one site. This
symmetry is restored at late times after the quench and it is an interesting question how this is reflected in the
probability distributions of observables.

A. Transverse field quench h0 �! h

In this quench protocol both the Hamiltonian and the initial state are translationally invariant. The characteristic
function has the determinant representation (32), (33) with [45]

gl = �i

Z ⇡

�⇡

dk

2⇡
e�iklei✓k (cos�k � i sin�k cos(2"kt)) (55)

fl =

Z ⇡

�⇡

dk

2⇡
e�ikl sin�k sin(2"kt) , (56)

where

ei✓k =
h� eik

p
1 + h2 � 2h cos k

, cos�k = 4
hh0 � (h+ h0) cos k + 1

"h(k)"h0(k)
. (57)

Using Szegő’s Lemma it is straightforward to obtain the large-` asymptotics in the initial (t = 0) and stationary
(t = 1) states. The t = 0 result corresponds to a ground state at field h0 and has been discussed earlier.

1. Behaviour in the stationary state

The late time asymptotics of the generating function can be determined from Szegő’s Lemma. For quenches into
the paramagnetic phase h > 1 it takes the form

lim
t!1

ln�(u)(�, `, t)

`
=

Z 2⇡

0

dk

2⇡
ln

�
cos�+ i sin� cos�ke

i✓k
�
+O(1/`) , ` � 1. (58)

The O(`�1) corrections also follow from Szegő’s Lemma. The real and imaginary parts of �(u)(�, `, t) (with O(`�1)
corrections included) are shown for a transverse field quench from h0 = 5 to h = 2 and subsystem size ` = 100 in
Fig. 4.

For quenches into the ferromagnetic phase and � < �c(h0, h), Eq. (58) continues to hold. However, for � > �c(h0, h)
the symbol exhibits non-zero winding number and the analysis needs to be modified, cf. Appendix A. The probability
distribution in the stationary state is obtained by Fourier transforming �(u)(�, `, t). Examples for several transverse

9

size ` for a range of temperatures. These are defined as the thermal expectation values

D"
Xp
hX2i�

#3 E

�
,

D"
Xp
hX2i�

#4 E

�
� 3 , X = Sz

u(`)� hSz
u(`)i� . (54)

Both skewness and excess kurtosis are non-vanishing for finite � and `, which establishes that the distribution is not
Gaussian. A very peculiar feature is that at fixed ` skewness and excess kurtosis are non-monotonic functions of the
temperature. Furthermore, we observe that at a fixed temperature they both tend to zero as the subsystem size ` is
increased. This signals that the corresponding probability distribution approaches a Gaussian. This is expected as
for large subsystem sizes the laws of thermodynamics apply and the probability distribution is then approximately
Gaussian with a standard deviation that scales as

p
`.

V. FULL COUNTING STATISTICS AFTER A QUANTUM QUENCH

We now turn to the time evolution of the characteristic function �(u,s)(�, t) after quantum quenches. We consider
two di↵erent classes of initial states:

• We initialize the system in the ground state of H(h0) and time evolve with H(h). Such transverse field quenches
have been studied in detail in the literature [40–47, 55–65].
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Higher cumulants behave in the same way.

h=0.5 J



Part I: FCS in equilibrium at a quantum 
critical point



Ground state of critical spin-1/2 XXZ chain

Full counting statistics in the spin-1/2 Heisenberg XXZ chain

Mario Collura, Fabian H.L. Essler, and Stefan Groha
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The spin-1/2 Heisenberg chain exhibits a quantum critical regime characterized by quasi long-
range magnetic order at zero temperature. We quantify the strength of quantum fluctuations in
the ground state by determining the probability distributions of the components of the (staggered)
subsystem magnetization. Some of these exhibit scaling and the corresponding universal scaling
functions can be determined by free fermion methods and by exploiting a relation with the boundary
sine-Gordon model.

I. INTRODUCTION

Universality is a key organizing principle for continuous phase transitions1,2. It posits that certain quantities are
independent of microscopic details and coincide in di↵erent physical systems that belong to the same “universality
class”. The latter are determined by properties such as symmetries and dimensionality and are amenable to field theory
descriptions. In 1+1 dimensions this permits the exact description of universal properties such as critical exponents
and correlation functions at conformally invariant quantum critical points. As emphasized in Ref. 3, less familiar
quantities like the order parameter probability distribution function display universal scaling as well. In quantum
theory these probability distributions describe the statistics of measurements on identical systems, which generally
give rise to di↵erent outcomes. Their analysis provides very detailed information about the physical properties of
many-particle systems and has been explored in a variety of areas including condensed matter4,5 and cold atom
physics6–9. Theoretical results on full counting statistics in quantum critical systems are relatively scarce. The list of
available results includes phase fluctuations in Luttinger liquids10–13, the order parameter statistics in the Ising field
theory3, the transverse magnetization in the Ising chain14 and the magnetization in the Haldane-Shastry model15.
Here we consider the (staggered) subsystem magnetization in the anisotropic one-dimensional spin-1/2 Heisenberg
XXZ chain

H = J
LX

j=1

Sx
j S

x
j+1 + Sy

j S
y
j+1 +�Sz

j S
z
j+1 . (1)

The XXZ chain is a paradigmatic model for quantum critical behaviour in 1+1 dimensions. It features a critical
line parametrized by the exchange anisotropy �1  �  1. The special values � = ±1 correspond to the isotropic
antiferromagnet and ferromagnet respectively. In the regime �1 < �  1 the low-energy behaviour of the model (1)
is described by Luttinger liquid theory or equivalently a free, compact boson16–19. The long-distance asymptotics of
spin-spin correlation functions is of the form
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where explicit expressions for the amplitudes in (2) are known20–23 and ⌘ is related to the anisotropy parameter � by

� = � cos(⇡⌘). (3)

It follows from (2) that throughout the critical regime the dominant correlations are those of the staggered magne-
tizations in the xy-plane. The XXZ chain thus exhibits antiferomagnetic quasi-long range order in the XY plane in
spin space. Two-point functions such s (2) are a standard means for characterizing physical properties and identifying
ground state “phases” in quantum critical systems19. A key objective of our work is to provide a complementary
characterization of ground state properties in the critical XXZ chain by determining the quantum mechanical fluctu-
ations of the subsystem magnetization in the ground state. More precisely we consider the probability distributions
of the following observables

S↵(`) =
X̀

j=1

S↵
j , N↵(`) =

X̀

j=1

(�1)jS↵
j . (4)

ar
X

iv
:1

70
6.

07
93

9v
1 

 [c
on

d-
m

at
.st

at
-m

ec
h]

  2
4 

Ju
n 

20
17

-1<Δ≤1

Full counting statistics in the spin-1/2 Heisenberg XXZ chain

Mario Collura, Fabian H.L. Essler, and Stefan Groha
The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, UK

The spin-1/2 Heisenberg chain exhibits a quantum critical regime characterized by quasi long-
range magnetic order at zero temperature. We quantify the strength of quantum fluctuations in
the ground state by determining the probability distributions of the components of the (staggered)
subsystem magnetization. Some of these exhibit scaling and the corresponding universal scaling
functions can be determined by free fermion methods and by exploiting a relation with the boundary
sine-Gordon model.

I. INTRODUCTION

Universality is a key organizing principle for continuous phase transitions1,2. It posits that certain quantities are
independent of microscopic details and coincide in di↵erent physical systems that belong to the same “universality
class”. The latter are determined by properties such as symmetries and dimensionality and are amenable to field theory
descriptions. In 1+1 dimensions this permits the exact description of universal properties such as critical exponents
and correlation functions at conformally invariant quantum critical points. As emphasized in Ref. 3, less familiar
quantities like the order parameter probability distribution function display universal scaling as well. In quantum
theory these probability distributions describe the statistics of measurements on identical systems, which generally
give rise to di↵erent outcomes. Their analysis provides very detailed information about the physical properties of
many-particle systems and has been explored in a variety of areas including condensed matter4,5 and cold atom
physics6–9. Theoretical results on full counting statistics in quantum critical systems are relatively scarce. The list of
available results includes phase fluctuations in Luttinger liquids10–13, the order parameter statistics in the Ising field
theory3, the transverse magnetization in the Ising chain14 and the magnetization in the Haldane-Shastry model15.
Here we consider the (staggered) subsystem magnetization in the anisotropic one-dimensional spin-1/2 Heisenberg
XXZ chain

H = J
LX

j=1

Sx
j S

x
j+1 + Sy

j S
y
j+1 +�Sz

j S
z
j+1 . (1)

The XXZ chain is a paradigmatic model for quantum critical behaviour in 1+1 dimensions. It features a critical
line parametrized by the exchange anisotropy �1  �  1. The special values � = ±1 correspond to the isotropic
antiferromagnet and ferromagnet respectively. In the regime �1 < �  1 the low-energy behaviour of the model (1)
is described by Luttinger liquid theory or equivalently a free, compact boson16–19. The long-distance asymptotics of
spin-spin correlation functions is of the form

hGS|Sx
j+nS

x
j |GSi = (�1)n

A

4n⌘

✓
1 � B

n4/⌘�4

◆
� Ã
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N.B. Slowest decay close to ferromagnet Δ≈-1 !



Subsystem Magnetization

Full counting statistics in the spin-1/2 Heisenberg XXZ chain

Mario Collura, Fabian H.L. Essler, and Stefan Groha
The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, UK

The spin-1/2 Heisenberg chain exhibits a quantum critical regime characterized by quasi long-
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smooth staggered

Probability distribution:

Characteristic function
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The quantities S↵(`) and N↵(`) describe the smooth and staggered components of the ↵-component of the magneti-
zation of the subsystem consisting of sites 1 to `, where ` ⌧ L. We note that whereas Sz(L) is a conserved quantity,
Sz(`) is not. The probabilities of the observables (4) taking some value m when the system is prepared in the ground
state and a measurement is then performed are
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As we have already mentioned, probability distributions like (5) are experimentally measurable in cold atom experi-
ments. The central objects of our analysis are the generating functions of the moments of the probability distributions
(5) are
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It is easy to see that they have the following properties
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The last relation allows us to restrict our attention to the interval 0  ✓ < 2⇡ and can be obtained e.g. from the
representation
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the probability distributions of interest can be expressed as
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An analogous equation holds for P↵
S (m, `).

A. Moments of the probability distributions

As we are not imposing a magnetic field and spontaneous symmetry breaking of the U(1) symmetry of the Heisenberg
Hamiltonian is forbidden in one spatial dimension, translational invariance implies that the averages of S↵(`) and
N↵(`) vanish

hGS|S↵(`)|GSi = 0 = hGS|N↵(`)|GSi. (11)

The variances have the following asymptotic expansions for large sub-system sizes `
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For su�ciently large values of ` we expect the coe�cients s↵ and n↵ to be equal to the corresponding quantities for
the entire system, i.e.
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As Sz(L) is a conserved quantity and our system is translationally invariant we have sz = 0. It is instructive to
consider the calculation of the variance of the subsystem magnetization by field theory methods. As the variances are

Focus on this
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(shown using bosonization)

3

non-universal quantities they are expected to be susceptible to short-distance physics, and this is indeed borne out
by the explicit calculation summarized in Appendix A.

While the moments themselves depend on microscopic details, certain ratios can be universal3,24,25. In particular
one may expect the following ratios to exhibit universal behaviour
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If these ratios are universal, the modified generating functions
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�2|GSi
, Y = S,N, (15)

will be universal functions of the parameter ✓. This means in particular that they can be calculated by field theory
methods. In practice (15) tells us that the moment generating functions calculated from field theory and computed
directly in the lattice model should agree up to an overall rescaling of the parameter ✓.

II. FIELD THEORY DESCRIPTION OF THE XXZ CHAIN

It is well established that the long distance behaviour of local equal time correlation functions in the critical
XXZ chain is well described by (perturbed) Luttinger liquid theory20,22,23,26,27. In absence of a magnetic field the
Hamiltonian can be cast in the form
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where � and ✓ are Bose fields with commutation relations [�(t, x), ✓(t, y)] = (i/2)sgn(x� y), the dots indicate pertur-
bations that are irrelevant in the renormalization group sense and
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The bosonization formulas for the spin operators are
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where a0 is the lattice spacing and the amplitudes b0, c1, b1 are known exactly23. For large subsystem sizes we thus
have
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Applying the bosonization prescription to our generating functions and ignoring subleading terms we obtain
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where |0i is the Fock vacuum. The representation (21) reveals that Gz
` (✓) maps onto a simple vertex operator two-

point function in the free boson theory, whereas F↵
` (✓) correspond to expectation values of non-local operators. The

alert reader will have noted that we did not provide a bosonized expression for Gx
` (✓). The reason is that the field

theory calculation of Gx
` (✓) is easier in a somewhat di↵erent setup and we return to this issue in section IVB1.

But ratios are!

“Rescaled” generating function is universal:
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where |0i is the Fock vacuum. The representation (21) reveals that Gz
` (✓) maps onto a simple vertex operator two-

point function in the free boson theory, whereas F↵
` (✓) correspond to expectation values of non-local operators. The

alert reader will have noted that we did not provide a bosonized expression for Gx
` (✓). The reason is that the field

theory calculation of Gx
` (✓) is easier in a somewhat di↵erent setup and we return to this issue in section IVB1.
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FIG. 1: Staggered transverse generating function F x
` (✓), for representative values of � and `.

field theory prediction (32), (35). We see that the numerical data exhibits scaling collapse and the agreement with
the theoretical scaling function is clearly very good. This holds for all values of � we have considered in the critical
regime �1 < �  1. We again see that in the attractive regime � < 0 the oscillatory behaviour away from ✓ = 0
becomes more pronounced.
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FIG. 2: Staggered transverse generating function F x
` (✓) for several values of �. The numerical results (symbols) are seen to

exhibit scaling collapse in the variable ✓`1�2⌘ and are well described by the universal scaling function (32), (35) calculated from
the boundary sine-Gordon model (red line).

We now turn to the other region in which F x
` (✓) is sizeable, namely ✓ ⇡ ⇡. Interestingly, as shown in Figs 3 and

4, we observe scaling behaviour here as well. There is a strong parity e↵ect in the subsystem size ` which requires us
to consider even and odd ` separately. Our numerical data in the vicinity of ✓ = ⇡ is well described by the scaling
ansatz

F x
` (✓ ⇡ ⇡) ' (�1)b`/2c`�1/4Fx

e/o(z) , z = (✓ � ⇡)`1�⌘/2 , (42)

where e/o refers to even and odd subsystem size ` respectively. Inspection of Figs 3 and 4 shows that the ansatz is in
excellent agreement with the data. We note that at ✓ = ⇡ the numerical data (for ` even) exhibit a perfect algebraic
decay ⇠ `�1/4, independent of the value of the interaction �. The form (42) suggests that for very large subsystem
sizes in the thermodynamic limit the feature at F x

` (✓ ⇡ ⇡) becomes less and less important compared to F x
` (✓ ⇡ 0).

At present no analytic results on F x
` (✓ ⇡ ⇡) are known. It should in principle be possible to calculate F x

e/o(z) using
field theory methods.

very small 

except at θ≈0,π

Results for Staggered Subsystem Magnetizations

A. Transverse component Fx
ℓ(θ) = ⟨GS |eiθ∑ℓ

j=1 (−1) jSx
j |GS⟩



Observe scaling collapse around θ=0,π:

Scaling collapse around θ≈0:

Red lines: exact field theory results using BSG mapping.

Similar scaling collapse around θ≈π (subleading contribution)
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FIG. 5: Probability distribution functions P x
N (m, `) for � = �0.6, � = 0 and � = 0.6. As P x

N (m, `) is a sum over �-functions
we plot the corresponding weights at the appropriate values of m. The solid red lines show the field theory result, which
becomes exact in the large-` limit.

observed scaling behaviour of these contributions we conclude that

P x
N (m, `) ' `

⌘
2�1 eFx

0 (m/`1�⌘/2) + (�1)b`/2c+bmc`
⌘
2�5/4 eFx

e/o(m/`1�⌘/2), (43)

where eFx
0 and eFx

e/o are obtained by Fourier transforming the functions Fx
0 (z) and Fx

e/o(z) that describe the scaling

behaviour of the generating function around ✓ = 0 and ✓ = ⇡ respectively. For large subsystem sizes ` the even/odd
e↵ect in m disappears and we are left with `

⌘
2�1 eFx

0 (m/`1�⌘/2), which can be calculated exactly using the boundary
sine-Gordon mapping. The corresponding contribution is shown by a solid red line in Figs 5 and 6. We see that for
attractive and moderately strong repulsive interactions there is an enhanced probability to form a large positive or
negative staggered moment in the xy-plane. However, this enhancement is not particularly pronounced. The e↵ect
is strongest close to the ferromagnet at � = �1 as can be seen in Fig. 6, which presents results for P x

N (m, `) at
� = �0.95. We observe that for large subsystem sizes ` the probability distribution becomes fairly flat over most of
allowed range of staggered magnetizations �`/2  m  `/2 except for an enhancement close to the maximal possible
values m ⇡ ±`/2.
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FIG. 6: Probability distribution functions P x
N (m, `) for � = �0.95. As the system become more and more ”ferromagnetic” the

probability distribution for the staggered subsystem magnetisation tends to become broader and flat.
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B. Longitudinal component

Scaling collapse around θ≈0:
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F. Longitudinal generating function F z
` (✓) and probability distribution P z

N (m, `)

We now turn to the longitudinal generating function F z
` (✓). As we will see, its behaviour is rather di↵erent from

F x
` (✓). According to the field theory approach discussed in section III B we expect F z

` (✓) to be described by the
scaling function

F z
` (✓ ⇡ 0) = e��z2/4 , z = ✓`1/2 , (44)

where � is a �-dependent constant that encodes the fact that appropriate ratios of moments are universal, while the
second moment itself is not, cf. eqn (15). Numerical results for F z

` (✓) are shown in Fig. 7 and are seen to be in
excellent agreement with the scaling form (44). The coe�cient � is found to be consistent with
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FIG. 7: Staggered longitudinal generating function F z
` (✓ ⇡ 0) for several values of �. The numerical data exhibit scaling

collapse that is in excellent agreement with the universal scaling function exp(��z2/4) (red line).

� =
1

2 � 2⌘
. (45)

We conclude that the fluctuations of Nz(`) have a very simple form: the second moment is

hGS|
�
Nz(`)

�2|GSi = `

8 � 8⌘
+ o(`) , (46)

while all higher cumulants vanish. We now turn to the behaviour of F z
` (✓ ⇡ ⇡). Guided by the exact result (27) for

� = 0 we have attempted to describe our numerical data by the ansatz

F z
` (✓ ⇡ ⇡) =

(
(�1)`/2A `↵e��z2/4 ` even

(�1)(`�1)/2 B
c+log(2`)`

� ze��z2/4 ` odd
, z = (⇡ � ✓)`1/2. (47)

Here A, B, ↵, � and c are �-dependent parameters that we fix by considering the `-dependencies of F z
` (⇡) (for `

even) and @✓F z
` (✓) (for ` odd). Our numerical results suggest that

↵ =
1

4⌘
, � =

1

2⌘
. (48)

In Figs 8 and 9 we compare numerical results for F z
` (✓ ⇡ ⇡) for several values of � and ` to the scaling ansatz (47),

(48). The agreement is seen to be quite satisfactory in all cases. Having determined the generating function F z
` (✓) we

can now use it to obtain the probability distribution of the longitudinal staggered subsystem magnetization P z
N (m, `)

by Fourier transform. Results for several values of � and ` are presented in Fig. 10.
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by Fourier transform. Results for several values of � and ` are presented in Fig. 10.

find that rescaling parameter is

red line = exact results

simple Gaussian

Similar scaling collapse around θ≈π (subleading contribution)

Fz
ℓ(θ) = ⟨GS |eiθ∑ℓ

j=1 (−1) jSz
j |GS⟩



Probability distribution:

PD is Gaussian and much narrower than transverse analog.
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FIG. 10: Probability distribution functions P z
N (m, `) for � = �0.6, � = 0 and � = 0.6. In the noninteracting case the

full lines are the exact results obtained using the determinant formula. In the interacting cases, the red dashed lines are the
leading smooth contribution coming from the scaling behaviour of the generating function in the vicinity of ✓ = 0. Notice in
particular that, in the ferromagnetic regime, the sub-leading staggered corrections are almost invisible for the sizes considered
here. Otherwise, as the antiferromagnetic regime is approached, the sub-leading parity e↵ects become more significant.

1. The XX point � = 0

As it is straightforward to take into account a magnetic field along the z-direction in this case, we present results
for the subsystem magnetization in the ground state of the Hamiltonian

H = J
LX

j=1

�
Sx
j S

x
j+1 + Sy

j S
y
j+1

�
� h

LX

j=1

Sz
j , 0 < h < 1. (49)

Here a simple determinant formula for Gz
` (✓) is known

39

Gz
` (✓) = ei

✓`
2 det

⇥
I+ (e�i✓ � 1)C

⇤
,

Cnm =
sin(kF (m � n))

⇡(m � n)
, kF = arccos(h/J) . (50)

The Toeplitz determinant (50) is related to a determinant that has been analyzed in great detail in the context of
entanglement entropies30. Using the results of Ref. 30 the large-` asymptotics of Gz

` (✓) can be expressed in the form

Gz
` (✓) = ei`✓/2

1X

j=�1
⇢`(j +

✓

2⇡
) (51)

where

⇢`(�) = e�2i�kF `
�
2` sin(kF )

��2�2

G2(1 + �)G2(1 � �)


1 +

c1(�)

`
+

c2(�)

`2
+ . . .

�
. (52)

Here G(z) is the Barnes G-function and

c1(�) = 2i�3 cot(kF ) , (53)

c2(�) =
�2

6
(�1 + 7�2 + 12�4 � 3�2(5 + 4�2) csc2 kF ) . (54)

The leading terms in (51) correspond to j = 0, 1 and have been considered previously in Ref. 40. The constant c1(�)
has been conjectured in Ref. 41. At zero magnetic field we have kF = ⇡/2 and

c1(�) = 0 , c2(�) = �1

6
�2(1 + 8�2). (55)

We note that at zero magnetic field the generating function is real. This is because all odd cumulants vanish as a
consequence of particle-hole symmetry. This ceases to be the case at finite magnetic fields, but odd cumulants still
vanish in the large ` limit (as for the gas42).



Part II: FCS in isolated out-of-equilibrium 
systems



Melting of LRO after a “Quantum Quench”

Full counting statistics in the spin-1/2 Heisenberg XXZ chain

Mario Collura, Fabian H.L. Essler, and Stefan Groha
The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, UK

The spin-1/2 Heisenberg chain exhibits a quantum critical regime characterized by quasi long-
range magnetic order at zero temperature. We quantify the strength of quantum fluctuations in
the ground state by determining the probability distributions of the components of the (staggered)
subsystem magnetization. Some of these exhibit scaling and the corresponding universal scaling
functions can be determined by free fermion methods and by exploiting a relation with the boundary
sine-Gordon model.

I. INTRODUCTION

Universality is a key organizing principle for continuous phase transitions1,2. It posits that certain quantities are
independent of microscopic details and coincide in di↵erent physical systems that belong to the same “universality
class”. The latter are determined by properties such as symmetries and dimensionality and are amenable to field theory
descriptions. In 1+1 dimensions this permits the exact description of universal properties such as critical exponents
and correlation functions at conformally invariant quantum critical points. As emphasized in Ref. 3, less familiar
quantities like the order parameter probability distribution function display universal scaling as well. In quantum
theory these probability distributions describe the statistics of measurements on identical systems, which generally
give rise to di↵erent outcomes. Their analysis provides very detailed information about the physical properties of
many-particle systems and has been explored in a variety of areas including condensed matter4,5 and cold atom
physics6–9. Theoretical results on full counting statistics in quantum critical systems are relatively scarce. The list of
available results includes phase fluctuations in Luttinger liquids10–13, the order parameter statistics in the Ising field
theory3, the transverse magnetization in the Ising chain14 and the magnetization in the Haldane-Shastry model15.
Here we consider the (staggered) subsystem magnetization in the anisotropic one-dimensional spin-1/2 Heisenberg
XXZ chain

H = J
LX

j=1

Sx
j S

x
j+1 + Sy

j S
y
j+1 +�Sz

j S
z
j+1 . (1)

The XXZ chain is a paradigmatic model for quantum critical behaviour in 1+1 dimensions. It features a critical
line parametrized by the exchange anisotropy �1  �  1. The special values � = ±1 correspond to the isotropic
antiferromagnet and ferromagnet respectively. In the regime �1 < �  1 the low-energy behaviour of the model (1)
is described by Luttinger liquid theory or equivalently a free, compact boson16–19. The long-distance asymptotics of
spin-spin correlation functions is of the form

hGS|Sx
j+nS

x
j |GSi = (�1)n

A

4n⌘

✓
1 � B

n4/⌘�4

◆
� Ã

4n⌘+1/⌘

 
1 +

B̃

n2/⌘�2

!
+ . . . ,

hGS|Sz
j+nS

z
j |GSi = � 1

4⇡2⌘n2

 
1 +

B̃z

n4/⌘�4

4 � 3⌘

2 � 2⌘

!
+ (�1)n

Az

4n1/⌘

✓
1 � Bz

n2/⌘�2

◆
+ . . . (2)

where explicit expressions for the amplitudes in (2) are known20–23 and ⌘ is related to the anisotropy parameter � by

� = � cos(⇡⌘). (3)

It follows from (2) that throughout the critical regime the dominant correlations are those of the staggered magne-
tizations in the xy-plane. The XXZ chain thus exhibits antiferomagnetic quasi-long range order in the XY plane in
spin space. Two-point functions such s (2) are a standard means for characterizing physical properties and identifying
ground state “phases” in quantum critical systems19. A key objective of our work is to provide a complementary
characterization of ground state properties in the critical XXZ chain by determining the quantum mechanical fluctu-
ations of the subsystem magnetization in the ground state. More precisely we consider the probability distributions
of the following observables

S↵(`) =
X̀

j=1

S↵
j , N↵(`) =

X̀

j=1

(�1)jS↵
j . (4)
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|Ψ(0)⟩ =|↑↓↑↓↑↓↑↓↑↓…⟩

- AFM Long-range order

• Consider the spin-1/2 XXZ chain

• Prepare the system at time t=0 in a classical Néel state

⟨Ψ(0) |∑
j

(−1) jSz
j |Ψ(0)⟩ ≠ 0

- not an eigenstate of H

• time-evolve with H |Ψ(t)⟩ = e−iHt |Ψ(0)⟩

M. Collura&FHLE ’19 



We are interested in the prob. dist. of N
z
ℓ =

ℓ∑

j=1

(−1)jSz
j
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⟨Ψ(t) |eiθNz
ℓ |Ψ(t)⟩require

This will initially depend on time, but eventually relax to a 
stationary value (“local relaxation”).

A

B

• Entire System: A∪B

• Take A infinite, B finite

• Ask questions only about B: 

ρSS = steady state density matrix

lim
t→∞

lim
L→∞

⟨Ψ(t) |𝒪B |Ψ(t)⟩ = Tr [ρSS𝒪B]

Physical Picture: A acts like a bath for B.



Probability distribution in initial state (t=0):
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→ delta-function at m=ℓ/2

What do we expect in the stationary state?



Stationary State:
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Stationary State:
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should be restored.
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for large Δ.



cf finite temperature equilibrium states

 ξ(T)>ℓ  ξ(T)<ℓ 



Time evolution for a “large quench”

Prob. dist. = 
narrow Gaussian

average

Here the prob. dist. does not give a lot of extra info (except at 
short times)…

(obtained from iTEBD)



Time evolution for a “small quench”

peak at

m=ℓ/2

remains

peak at

m=-ℓ/2

develops

average

Prob. dist. reveals a lot of physics beyond the average!

(obtained from iTEBD)



Time evolution for an “intermediate quench”

Broad prob. dist. 

average



To make analytic progress consider TFIM.

For XXZ we understand the “small-Δ” and short time regimes by a 
self-consistent time-dependent mean-field approximation in the 
fermionic representation; no analytic results.



Analytic results: Transverse-Field Ising Chain

2

A. Transverse Field Ising chain

In the following we consider the spin-1/2 transverse field Ising model on an infinite chain

H(h) =�

1X

j=�1

⇥
�x

j
�x

j+1 + h�z

j

⇤
. (1)

The ground state phase diagram features ferromagnetic (h < 1) and paramagnetic (h > 1) phases that are separated
by a quantum critical point in the universality class of the two-dimensional Ising model [26]. The order parameter
that characterizes the transition is the longitudinal magnetisation hGS|�x

j
|GSi. At finite temperature spontaneous

breaking of the 2 symmetry of H(h) is forbidden and hence the order present in the ground state at h < 1 melts. In
order for this paper to be self-contained we now briefly summarize the relevant steps for diagonalizing the Hamiltonian
(1). A more detailed discussion can be found in e.g. the Appendix in [40]. The TFIC is mapped to a model of spinless
fermions by a Jordan-Wigner transformation

�z

j
= 1� 2c†

j
c
j
, �x

j
=

j�1Y

l=�1
(1� 2c†

l
c
l
)(cj + c†

j
) , (2)

where cj are fermion operators obeying canonical anticommutation relations {c†
j
, ck} = �j,k. Setting aside the issue

of boundary conditions the Hamiltonian takes the form

H(h) =� J
1X

j=�1
(c†

j
� cj)(cj+1 + c†

j+1)� Jhc
j
c†
j
� c†

j
c
j
. (3)

This is diagonalized by a Bogoliubov transformation

cj =

Z
⇡

�⇡

dk

2⇡
e�ikj

h
cos(✓k/2)↵k + i sin(✓k/2)↵

†
�k

i
, (4)

where {↵k,↵†
p
} = �p,k and the Bogoliuobov angle is

ei✓k =
h� eik

p
1 + h2 � 2h cos k

. (5)

The Hamiltonian takes the form

H(h) =

Z
⇡

�⇡

dk

2⇡
"(k)


↵†
k
↵k �

1

2

�
, (6)

where the dispersion relation is given by

"(k) =2J
p

1 + h2 � 2h cos(k). (7)

The ground state of H(h) is equal to the Bogoliubov vacuum state defined by

↵k |0i = 0. (8)

II. FULL COUNTING STATISTICS AND GENERATING FUNCTION

We are interested in the properties of the smooth and staggered components of the transverse magnetization of a
chain segment of length `. These are defined as

Sz

u
(`) =

`X

j=1

�z

j
, Sz

s
(`) =

`X

j=1

(�1)j�z

j
. (9)

Given a density matrix ⇢ that specifies the quantum mechanical state of our system, the probability distributions for
the transverse subsystem magnetizations are given by

P (u,s)(m) = Tr
�
⇢ �

�
m� Sz

u,s
(`)

��
. (10)
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h01
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0

Quantum 
Critical Point

Phase Diagram:

T>0: order melts ⟨σx
j ⟩ ≠ 0
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Z2 symmetry: rotations around z-axis by π
<latexit sha1_base64="5Y3MqIv6Mgn/n4IN7mMgn0xUan4=">AAACJXicbVDLSgMxFM34tr6qLt0Ei+DGMiOCDxQENy4rWFvslJJJb9tgJhmSO+I49Gvc+CtuXKgIrvwV08fC14HA4Zx7yT0nSqSw6Psf3sTk1PTM7Nx8YWFxaXmluLp2ZXVqOFS5ltrUI2ZBCgVVFCihnhhgcSShFt2cDfzaLRgrtLrELIFmzLpKdARn6KRW8SSMGfaiKL/ut3ZpiHCHObVZHAOa7IgajcNBS5nRqWrT+x12JyyNMtoPE9EqlvyyPwT9S4IxKZExKq3iS9jWPI1BIZfM2kbgJ9jMmUHBJfQLYWohYfyGdaHhqGIx2GY+jNmnW05p04427imkQ/X7Rs5i606P3OQglP3tDcT/vEaKnYNmLlSSIig++qiTSoqaDjqjbWGAo8wcYdwIdyvlPWYYR9dswZUQ/I78l1R3y4fl4GKvdHo8bmOObJBNsk0Csk9OyTmpkCrh5IE8kRfy6j16z96b9z4anfDGO+vkB7zPL7raph0=</latexit><latexit sha1_base64="5Y3MqIv6Mgn/n4IN7mMgn0xUan4=">AAACJXicbVDLSgMxFM34tr6qLt0Ei+DGMiOCDxQENy4rWFvslJJJb9tgJhmSO+I49Gvc+CtuXKgIrvwV08fC14HA4Zx7yT0nSqSw6Psf3sTk1PTM7Nx8YWFxaXmluLp2ZXVqOFS5ltrUI2ZBCgVVFCihnhhgcSShFt2cDfzaLRgrtLrELIFmzLpKdARn6KRW8SSMGfaiKL/ut3ZpiHCHObVZHAOa7IgajcNBS5nRqWrT+x12JyyNMtoPE9EqlvyyPwT9S4IxKZExKq3iS9jWPI1BIZfM2kbgJ9jMmUHBJfQLYWohYfyGdaHhqGIx2GY+jNmnW05p04427imkQ/X7Rs5i606P3OQglP3tDcT/vEaKnYNmLlSSIig++qiTSoqaDjqjbWGAo8wcYdwIdyvlPWYYR9dswZUQ/I78l1R3y4fl4GKvdHo8bmOObJBNsk0Csk9OyTmpkCrh5IE8kRfy6j16z96b9z4anfDGO+vkB7zPL7raph0=</latexit><latexit sha1_base64="5Y3MqIv6Mgn/n4IN7mMgn0xUan4=">AAACJXicbVDLSgMxFM34tr6qLt0Ei+DGMiOCDxQENy4rWFvslJJJb9tgJhmSO+I49Gvc+CtuXKgIrvwV08fC14HA4Zx7yT0nSqSw6Psf3sTk1PTM7Nx8YWFxaXmluLp2ZXVqOFS5ltrUI2ZBCgVVFCihnhhgcSShFt2cDfzaLRgrtLrELIFmzLpKdARn6KRW8SSMGfaiKL/ut3ZpiHCHObVZHAOa7IgajcNBS5nRqWrT+x12JyyNMtoPE9EqlvyyPwT9S4IxKZExKq3iS9jWPI1BIZfM2kbgJ9jMmUHBJfQLYWohYfyGdaHhqGIx2GY+jNmnW05p04427imkQ/X7Rs5i606P3OQglP3tDcT/vEaKnYNmLlSSIig++qiTSoqaDjqjbWGAo8wcYdwIdyvlPWYYR9dswZUQ/I78l1R3y4fl4GKvdHo8bmOObJBNsk0Csk9OyTmpkCrh5IE8kRfy6j16z96b9z4anfDGO+vkB7zPL7raph0=</latexit>

<latexit sha1_base64="5Y3MqIv6Mgn/n4IN7mMgn0xUan4=">AAACJXicbVDLSgMxFM34tr6qLt0Ei+DGMiOCDxQENy4rWFvslJJJb9tgJhmSO+I49Gvc+CtuXKgIrvwV08fC14HA4Zx7yT0nSqSw6Psf3sTk1PTM7Nx8YWFxaXmluLp2ZXVqOFS5ltrUI2ZBCgVVFCihnhhgcSShFt2cDfzaLRgrtLrELIFmzLpKdARn6KRW8SSMGfaiKL/ut3ZpiHCHObVZHAOa7IgajcNBS5nRqWrT+x12JyyNMtoPE9EqlvyyPwT9S4IxKZExKq3iS9jWPI1BIZfM2kbgJ9jMmUHBJfQLYWohYfyGdaHhqGIx2GY+jNmnW05p04427imkQ/X7Rs5i606P3OQglP3tDcT/vEaKnYNmLlSSIig++qiTSoqaDjqjbWGAo8wcYdwIdyvlPWYYR9dswZUQ/I78l1R3y4fl4GKvdHo8bmOObJBNsk0Csk9OyTmpkCrh5IE8kRfy6j16z96b9z4anfDGO+vkB7zPL7raph0=</latexit>

σ
x
j → −σ

x
j

<latexit sha1_base64="kkbjNelz99tiBAYCQGFzkJNHLsI=">AAACCHicbVBNS8NAEN34WetX1KOXxSJ4sSQiqOCh4MVjBWMLTQ2b7SZdu5sNuxu1hF69+Fe8eFDx6k/w5r9x2wbU1gcDj/dmmJkXpowq7Thf1szs3PzCYmmpvLyyurZub2xeKZFJTDwsmJDNECnCaEI8TTUjzVQSxENGGmHvbOg3bolUVCSXup+SNkdxQiOKkTZSYENf0Zij6/vgxpc07mokpbjb/1EDu+JUnRHgNHELUgEF6oH96XcEzjhJNGZIqZbrpLqdI6kpZmRQ9jNFUoR7KCYtQxPEiWrno08GcNcoHRgJaSrRcKT+nsgRV6rPQ9PJke6qSW8o/ue1Mh0dt3OapJkmCR4vijIGtYDDWGCHSoI16xuCsKTmVoi7SCKsTXhlE4I7+fI08Q6qJ1X34rBSOy3SKIFtsAP2gAuOQA2cgzrwAAYP4Am8gFfr0Xq23qz3ceuMVcxsgT+wPr4B4h6aow==</latexit><latexit sha1_base64="kkbjNelz99tiBAYCQGFzkJNHLsI=">AAACCHicbVBNS8NAEN34WetX1KOXxSJ4sSQiqOCh4MVjBWMLTQ2b7SZdu5sNuxu1hF69+Fe8eFDx6k/w5r9x2wbU1gcDj/dmmJkXpowq7Thf1szs3PzCYmmpvLyyurZub2xeKZFJTDwsmJDNECnCaEI8TTUjzVQSxENGGmHvbOg3bolUVCSXup+SNkdxQiOKkTZSYENf0Zij6/vgxpc07mokpbjb/1EDu+JUnRHgNHELUgEF6oH96XcEzjhJNGZIqZbrpLqdI6kpZmRQ9jNFUoR7KCYtQxPEiWrno08GcNcoHRgJaSrRcKT+nsgRV6rPQ9PJke6qSW8o/ue1Mh0dt3OapJkmCR4vijIGtYDDWGCHSoI16xuCsKTmVoi7SCKsTXhlE4I7+fI08Q6qJ1X34rBSOy3SKIFtsAP2gAuOQA2cgzrwAAYP4Am8gFfr0Xq23qz3ceuMVcxsgT+wPr4B4h6aow==</latexit><latexit sha1_base64="kkbjNelz99tiBAYCQGFzkJNHLsI=">AAACCHicbVBNS8NAEN34WetX1KOXxSJ4sSQiqOCh4MVjBWMLTQ2b7SZdu5sNuxu1hF69+Fe8eFDx6k/w5r9x2wbU1gcDj/dmmJkXpowq7Thf1szs3PzCYmmpvLyyurZub2xeKZFJTDwsmJDNECnCaEI8TTUjzVQSxENGGmHvbOg3bolUVCSXup+SNkdxQiOKkTZSYENf0Zij6/vgxpc07mokpbjb/1EDu+JUnRHgNHELUgEF6oH96XcEzjhJNGZIqZbrpLqdI6kpZmRQ9jNFUoR7KCYtQxPEiWrno08GcNcoHRgJaSrRcKT+nsgRV6rPQ9PJke6qSW8o/ue1Mh0dt3OapJkmCR4vijIGtYDDWGCHSoI16xuCsKTmVoi7SCKsTXhlE4I7+fI08Q6qJ1X34rBSOy3SKIFtsAP2gAuOQA2cgzrwAAYP4Am8gFfr0Xq23qz3ceuMVcxsgT+wPr4B4h6aow==</latexit>

<latexit sha1_base64="kkbjNelz99tiBAYCQGFzkJNHLsI=">AAACCHicbVBNS8NAEN34WetX1KOXxSJ4sSQiqOCh4MVjBWMLTQ2b7SZdu5sNuxu1hF69+Fe8eFDx6k/w5r9x2wbU1gcDj/dmmJkXpowq7Thf1szs3PzCYmmpvLyyurZub2xeKZFJTDwsmJDNECnCaEI8TTUjzVQSxENGGmHvbOg3bolUVCSXup+SNkdxQiOKkTZSYENf0Zij6/vgxpc07mokpbjb/1EDu+JUnRHgNHELUgEF6oH96XcEzjhJNGZIqZbrpLqdI6kpZmRQ9jNFUoR7KCYtQxPEiWrno08GcNcoHRgJaSrRcKT+nsgRV6rPQ9PJke6qSW8o/ue1Mh0dt3OapJkmCR4vijIGtYDDWGCHSoI16xuCsKTmVoi7SCKsTXhlE4I7+fI08Q6qJ1X34rBSOy3SKIFtsAP2gAuOQA2cgzrwAAYP4Am8gFfr0Xq23qz3ceuMVcxsgT+wPr4B4h6aow==</latexit>

h010

S. Groha, FHLE 

& P. Calabrese ‘18



Consider QQs e.g. from ground states of H(h0) and determine

PD of transverse subsystem magnetisation:

local in fermions

PSz
u(ℓ),|Ψ(t)⟩(μ) = ⟨Ψ(t) |δ(Sz

u(ℓ) − μ) |Ψ(t)⟩ = ∫
∞

−∞
dλ e−iμλ ⟨Ψ(t) |eiλSz

u(ℓ) |Ψ(t)⟩

χu(λ,ℓ)

= 2∑
r∈ℤ

P(u)
w (r, t) δ(m − 2r) (ℓ even)

2

further investigation.

II. THE MODEL AND THE FULL COUNTING STATISTICS

A. Transverse Field Ising chain

In the following we consider the spin-1/2 transverse field Ising model on an infinite chain

H(h) =�

1X

j=�1

⇥
�x
j �

x
j+1 + h�z

j

⇤
. (1)

The ground state phase diagram features ferromagnetic (h < 1) and paramagnetic (h > 1) phases that are separated
by a quantum critical point in the universality class of the two-dimensional Ising model [35]. The order parameter
that characterizes the transition is the longitudinal magnetisation hGS|�x

j |GSi. At finite temperature spontaneous
breaking of the 2 symmetry of H(h) is forbidden and hence the order present in the ground state at h < 1 melts. In
order for this paper to be self-contained we now briefly summarize the relevant steps for diagonalizing the Hamiltonian
(1). A more detailed discussion can be found in e.g. the Appendix in [42]. The TFIC is mapped to a model of spinless
fermions by a Jordan-Wigner transformation

�z
j = 1� 2c†jcj , �x

j =
j�1Y

l=�1
(1� 2c†l cl )(cj + c†j) , (2)

where cj are fermion operators obeying canonical anticommutation relations {c†j , ck} = �j,k. Setting aside the issue
of boundary conditions the Hamiltonian takes the form

H(h) =� J
1X

j=�1
(c†j � cj)(cj+1 + c†j+1)� Jh(cjc

†
j � c†jcj). (3)

This is diagonalized by a Bogoliubov transformation

cj =

Z ⇡

�⇡

dk

2⇡
e�ikj

h
cos(✓k/2)↵k + i sin(✓k/2)↵

†
�k

i
, (4)

where {↵k,↵†
p} = �p,k and the Bogoliuobov angle is

ei✓k =
h� eik

p
1 + h2 � 2h cos k

. (5)

The Hamiltonian takes the form

H(h) =

Z ⇡

�⇡

dk

2⇡
"(k)


↵†
k↵k �

1

2

�
, (6)

where the dispersion relation is given by

"(k) =2J
p

1 + h2 � 2h cos(k). (7)

The ground state of H(h) is equal to the Bogoliubov vacuum state defined by

↵k |0i = 0. (8)

B. Full Counting Statistics and Generating Function

We are interested in the properties of the smooth and staggered components of the transverse magnetization of a
chain segment of length `. These are defined as

Sz
u(`) =

X̀

j=1

�z
j , Sz

s (`) =
X̀

j=1

(�1)j�z
j . (9)

2

further investigation.

II. THE MODEL AND THE FULL COUNTING STATISTICS

A. Transverse Field Ising chain

In the following we consider the spin-1/2 transverse field Ising model on an infinite chain

H(h) =�

1X

j=�1

⇥
�x
j �

x
j+1 + h�z

j

⇤
. (1)

The ground state phase diagram features ferromagnetic (h < 1) and paramagnetic (h > 1) phases that are separated
by a quantum critical point in the universality class of the two-dimensional Ising model [35]. The order parameter
that characterizes the transition is the longitudinal magnetisation hGS|�x

j |GSi. At finite temperature spontaneous
breaking of the 2 symmetry of H(h) is forbidden and hence the order present in the ground state at h < 1 melts. In
order for this paper to be self-contained we now briefly summarize the relevant steps for diagonalizing the Hamiltonian
(1). A more detailed discussion can be found in e.g. the Appendix in [42]. The TFIC is mapped to a model of spinless
fermions by a Jordan-Wigner transformation

�z
j = 1� 2c†jcj , �x

j =
j�1Y

l=�1
(1� 2c†l cl )(cj + c†j) , (2)

where cj are fermion operators obeying canonical anticommutation relations {c†j , ck} = �j,k. Setting aside the issue
of boundary conditions the Hamiltonian takes the form

H(h) =� J
1X

j=�1
(c†j � cj)(cj+1 + c†j+1)� Jh(cjc

†
j � c†jcj). (3)

This is diagonalized by a Bogoliubov transformation

cj =

Z ⇡

�⇡

dk

2⇡
e�ikj

h
cos(✓k/2)↵k + i sin(✓k/2)↵

†
�k

i
, (4)

where {↵k,↵†
p} = �p,k and the Bogoliuobov angle is

ei✓k =
h� eik

p
1 + h2 � 2h cos k

. (5)

The Hamiltonian takes the form

H(h) =

Z ⇡

�⇡

dk

2⇡
"(k)


↵†
k↵k �

1

2

�
, (6)

where the dispersion relation is given by

"(k) =2J
p

1 + h2 � 2h cos(k). (7)

The ground state of H(h) is equal to the Bogoliubov vacuum state defined by

↵k |0i = 0. (8)

B. Full Counting Statistics and Generating Function

We are interested in the properties of the smooth and staggered components of the transverse magnetization of a
chain segment of length `. These are defined as

Sz
u(`) =

X̀

j=1

�z
j , Sz

s (`) =
X̀

j=1

(�1)j�z
j . (9)

TFIM can be mapped to free fermions by JW trafo:

S
z
u(ℓ) =
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σ
z
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1− 2c†jcj
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We are now in a position to write down a convenient determinant representation for the generating functions
�(u,s)(�, `). To do so we employ a relation derived in Ref. [52]: given two Gaussian density matrices ⇢1,2 with
correlation matrices �1,2 the trace of their product is given by

Tr [⇢1 ⇢2] =

s

det

✓
1 + �1�2

2

◆
. (28)

Applying this relation to our case we arrive at the following determinant representations

�(a)(�, `) =
1

(2 cos�)`

vuutdet

 
1 + �Ae�(a)

2

!
, a = u, s , (29)

where �A and �(u,s) are given in (19) and (26), (27) respectively.

A. Simplification in special cases

Equation (29) has been derived for a general 2-invariant Gaussian state with density matrix ⇢. If the state is also
invariant under translations and reflections with respect to a site the generating function �(u)(�, `) can be simplified
further. Indeed, under these conditions, the correlation matrix assumes a block Toeplitz form [44, 50]

�A =

0

BBBB@

⇧0 ⇧�1 . . . ⇧1�`

⇧1 ⇧0

...
...

. . .
...

⇧`�1 . . . . . . ⇧0

1

CCCCA
, ⇧l =

✓
�fl gl
�g�l fl

◆
, (30)

where

gl = Tr
�
a2na2n+2l�1

�
= �Tr

�
a2n�1a2n�2l

�
,

fl = Tr
�
a2na2n+2l

�
� �l0 . (31)

Taking advantage of the block diagonal form of the correlation matrix of the auxiliary density matrix in (27) we can
cast the generating function in the form

�(u)(�, `) = (2 cos�)`

s

det

✓
1� tan(�)�0

2

◆
, (32)

where �0 is a block Toeplitz matrix

�0 =

0

BBBB@

⇧0
0 ⇧0

�1 . . . ⇧0
1�`

⇧0
1 ⇧0

0

...
...

. . .
...

⇧0
`�1 . . . . . . ⇧0

0

1

CCCCA
, ⇧0

l =

✓
gl fl
fl g�l

◆
. (33)

B. Expressions for the first few cumulants

The determinant representation (29) of the generating function provides an e�cient way for determining the cu-
mulants of the probability distribution, which is the main purpose of the function itself. The cumulants are obtained
in the usual way from the series expansions of ln�(u,s)(�, `)

ln�(u,s)(�, `) =
1X

n=1

C(u,s)
n

n!
(i�)n. (34)

How to obtain analytic results after QQ:

Step 1: exact determinant representation for generating function

known 2ℓx2ℓ matrix

Step 2: multiple integral representation
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VI. ANALYTIC RESULTS FOR THE PROBABILITY DISTRIBUTION

We now restrict our discussion to the particular case of transverse field quenches. As we have seen above, in
this case the characteristic functions �(u)(�, `, t) exhibit a scaling collapse at late times, cf. (58). This suggests
that it might be possible to obtain analytic results for the late time asymptotics by a suitable generalization of the
multi-dimensional stationary state approximation method previously used to determine the asymptotics of the order
parameter two-point function [40] and the entanglement entropy [45]. As we will see, such a generalization is indeed
possible, even though the case at hand is significantly more complicated.

Our starting point is the following expression

ln�(u)(�, `, t) = ` ln (cos�) +
1

2
Tr (ln(1� tan� �0)) , (71)

which is derived from (32) by using the identity ln (det (A)) = Tr (ln (A)). The second term in (71) can be expanded
in a power series

1

2
Tr (ln(1� tan� �0)) =�

1

2

1X

n=1

�
tan(�)

�n

n
Tr
⇥
(�0)n

⇤
. (72)

This then leads us to examine integer powers (�0)n of the correlation matrix. Unlike in the case of the order parameter
two-point function analyzed in [41] odd powers do not vanish because �0 is not a real anti-symmetric matrix. The
symbol t0(k) corresponding to the correlation matrix �0 is defined by

(�0)ln =

Z ⇡

�⇡

dk

2⇡
ei(l�n)k t̂0(k) . (73)

Its explicit expression for a magnetic field quench from h0 to h is

t̂0(k) =

✓
�iei✓k(cos�k � i sin�k cos(2"kt)) sin�k sin(2"kt)

sin�k sin(2"kt) �ie�i✓k(cos�k + i sin�k cos(2"kt))

◆
, (74)

where ✓k and �k have been previous defined in (56). Following Ref. [41] we can represent the trace of powers of the
correlation matrix as multiple integrals

Tr
⇥
(�0)n

⇤
=

✓
`

2

◆n Z ⇡

�⇡

dk1 . . . dkn
(2⇡)n

Z 1

�1
d⇠1 . . . d⇠n C

�
~k
�
F
�
~k
�
exp

0

@i`
n�1X

j=0

⇠j
2
(kj+1 � kj)

1

A , (75)

where we have defined k0 ⌘ kn and

C(~k) =
n�1Y

j=0

kj � kj�1

2 sin [(kj � kj�1)/2]
, F (~k) = Tr

 
n�1Y

i=0

t̂0(ki)

!
. (76)

We now change variables

⇣0 = ⇠1 , ⇣i = ⇠i+1 � ⇠i , i = 1, . . . , n� 1 . (77)

The integration ranges in the ⇣ variables is determined by the constraints

� 1 

k�1X

j=0

⇣j  1 , k = 1, . . . , n. (78)

The integral over ⇣0 can now be carried out as the integrand does not depend on it. This gives

Tr
⇥
(�0)n

⇤
=

✓
`

2

◆n Z ⇡

�⇡

dk1 . . . dkn
(2⇡)n

Z 1

�1
d⇣1 . . . d⇣n�1 µ(~⇣) C

�
~k
�
F
�
~k
�
exp

0

@�i`
n�1X

j=1

⇣j
2
(kj � k0)

1

A , (79)

where µ({⇣}) is the size of the range of ⇣0 under the constraints (78)

µ(~⇣) = max

"
0, min

0jn�1

 
1�

jX

k=1

⇣k

!
+ min

0jn�1

 
1 +

jX

k=1

⇣k

!#
. (80)
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We now change variables

⇣0 = ⇠1 , ⇣i = ⇠i+1 � ⇠i , i = 1, . . . , n� 1 . (77)

The integration ranges in the ⇣ variables is determined by the constraints
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The integral over ⇣0 can now be carried out as the integrand does not depend on it. This gives
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where µ({⇣}) is the size of the range of ⇣0 under the constraints (78)
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VI. ANALYTIC RESULTS FOR THE PROBABILITY DISTRIBUTION

We now restrict our discussion to the particular case of transverse field quenches. As we have seen above, in
this case the characteristic functions �(u)(�, `, t) exhibit a scaling collapse at late times, cf. (58). This suggests
that it might be possible to obtain analytic results for the late time asymptotics by a suitable generalization of the
multi-dimensional stationary state approximation method previously used to determine the asymptotics of the order
parameter two-point function [40] and the entanglement entropy [45]. As we will see, such a generalization is indeed
possible, even though the case at hand is significantly more complicated.
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This then leads us to examine integer powers (�0)n of the correlation matrix. Unlike in the case of the order parameter
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symbol t0(k) corresponding to the correlation matrix �0 is defined by
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where ✓k and �k have been previous defined in (56). Following Ref. [41] we can represent the trace of powers of the
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Step 3: asymptotics from multi-dim stationary phase approx

and summing result over all n

difficult.
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2. Result for �(�, `, t)

In order to obtain the logarithm of the characteristic function �(�, `, t) we now need to sum over all contributions
(93) with coe�cients given in (71). This is a formidable task. It turns out that the structure of Heaviside step
functions discussed above provides a very useful way of organizing the complicated summation required. The full
result can be expressed in the form

ln�(�, `, t) ⇡ ` log(cos�) +
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2
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fn,m(�, k0) + C . (98)

Here C is a constant that is beyond the accuracy of the stationary phase approximation and the functions fn,m(�, k0, t)
are given in terms of infinite series. Based on the first 15 terms in these series we conjecture the following explicit
expressions
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(99)

In principle one could determine further terms fn,0 but their contribution turns out to be negligible for all cases we
have considered. The contributions fn,m>0(�, k0, t) are more di�cult to simplify. While the term f0,1 can still be
obtained without further approximations, in order to obtain closed form expressions for m > 1 we have resorted to
an expansion in powers of sin(�k0). This is expected to give very accurate results for small quenches, which are
defined as producing a small density of elementary excitations through the quench [39, 40]. The leading terms are
then conjectured to be of the form

f0,1 = �i tan�k0 ln
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As we will see below, the contributions described by (99) and (100) are su�cient to obtain an extremely accurate
description of �(�, `, t). The constant C can be fixed by comparing the t ! 1 limit of (98) to the result obtained
previously for the behaviour in the stationary state. For later convenience we define two approximations as

ln�a(�, `, t) = ` log(cos�) +
`

2
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where a = 1, 2 and where we set f2,1 = 0. Should probably give a few more details.

3. Comparison to numerical results

We now turn to a comparison between our analytical result (101) and a direct numerical evaluation of the deter-
minant representation (32), (33). The numerical errors in the latter are negligible. We first consider �1(�, `, t). A
representative comparison between the corresponding analytical results to numerics is shown in Fig. 17. We see that
�1(�, `, t) reproduces the numerics very well at late times after the quench. In contrast, the oscillatory behaviour
at short times is clearly not captured. Comparisons for other values of � and other quenches, both within the same
phase and between the two phases, are very similar in structure and level of agreement.

We now consider the improved approximation �2(�, `, t) (101). As shown in Fig. 18 for a representative example
this approximation leads to a markedly improved agreement with the numerics. As expected, the analytic result is
most accurate in the full range of the “counting parameter” � when sin�k0 is small. For larger values of sin�k0

we still find excellent agreement between the analytic result and numerics as long as tan� is small. This can be
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Result:

9

temperature. Furthermore, we observe that at a fixed temperature they both tend to zero as the subsystem size ` is
increased. This signals that the corresponding probability distribution approaches a Gaussian. This is expected as
for large subsystem sizes the laws of thermodynamics apply and the probability distribution is then approximately
Gaussian with a standard deviation that scales as

p
`.

V. FULL COUNTING STATISTICS AFTER A QUANTUM QUENCH

We now turn to the time evolution of the characteristic function �(u,s)(�, t) after quantum quenches. We consider
two di↵erent classes of initial states:

• We initialize the system in the ground state of H(h0) and time evolve with H(h). Such transverse field quenches
have been studied in detail in the literature [39–46, 53–63].

• We initialize the system in the Néel state |"#"# . . . "#i, thus breaking translational symmetry by one site. This
symmetry is restored at late times after the quench and it is an interesting question how this is reflected in the
probability distributions of observables.

A. Transverse field quench h0 �! h

In this quench protocol both the Hamiltonian and the initial state are translationally invariant. The characteristic
function has the determinant representation (32), (33) with [44]

gl = �i

Z ⇡

�⇡

dk

2⇡
e�iklei✓k (cos�k � i sin�k cos(2"kt)) (54)

fl =

Z ⇡
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2⇡
e�ikl sin�k sin(2"kt) , (55)

where

ei✓k =
h� eik

p
1 + h2 � 2h cos k

, cos�k = 4
hh0 � (h+ h0) cos k + 1

"h(k)"h0(k)
. (56)

Using Szegő’s Lemma it is straightforward to obtain the large-` asymptotics in the initial (t = 0) and stationary
(t = 1) states. The t = 0 result corresponds to a ground state at field h0 and has been discussed earlier.

1. Behaviour in the stationary state

The late time asymptotics of the generating function can be determined from Szegő’s Lemma. For quenches into
the paramagnetic phase h > 1 it takes the form

lim
t!1

ln�(u)(�, `, t)

`
=

Z 2⇡

0

dk

2⇡
ln

�
cos�+ i sin� cos�ke

i✓k
�
+O(1/`) , ` � 1. (57)

The O(`�1) corrections also follow from Szegő’s Lemma. The real and imaginary parts of �(u)(�, `, t) (with O(`�1)
corrections included) are shown for a transverse field quench from h0 = 5 to h = 2 and subsystem size ` = 100 in
Fig. 4.

For quenches into the ferromagnetic phase and � < �c(h0, h), Eq. (57) continues to hold. However, for � > �c(h0, h)
the symbol exhibits non-zero winding number and the analysis needs to be modified, cf. Appendix A. The probability
distribution in the stationary state is obtained by Fourier transforming �(u)(�, `, t). Examples for several transverse
field quenches are shown in Fig. 5. We again employ a logarithmic scale to make the deviations from a Gaussian form
more apparent. In Figs 6 we plot the skewness and the excess kurtosis of the steady state probability distributions for
a number of transverse field quenches. We observe that in all cases both skewness and excess kurtosis tend to zero for
large subsystem sizes. This signals that the probability distributions approach Gaussians in the large-` limit. While
the steady states are non-thermal now, they still exhibit finite correlation lengths. Employing the same arguments as
for finite temperature ensembles then implies that the cumulants of Sz

u(`) are proportional to ` in the large-` limit.
This in turn suggests that skewness and excess kurtosis should scale as `�1/2 and `�1 respectively, while the standard
deviation scales as `1/2. These expectations are in perfect agreement with our findings.
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further investigation.

II. THE MODEL AND THE FULL COUNTING STATISTICS

A. Transverse Field Ising chain

In the following we consider the spin-1/2 transverse field Ising model on an infinite chain

H(h) =�

1X

j=�1

⇥
�x
j �

x
j+1 + h�z

j

⇤
. (1)

The ground state phase diagram features ferromagnetic (h < 1) and paramagnetic (h > 1) phases that are separated
by a quantum critical point in the universality class of the two-dimensional Ising model [34]. The order parameter
that characterizes the transition is the longitudinal magnetisation hGS|�x

j |GSi. At finite temperature spontaneous
breaking of the 2 symmetry of H(h) is forbidden and hence the order present in the ground state at h < 1 melts. In
order for this paper to be self-contained we now briefly summarize the relevant steps for diagonalizing the Hamiltonian
(1). A more detailed discussion can be found in e.g. the Appendix in [41]. The TFIC is mapped to a model of spinless
fermions by a Jordan-Wigner transformation

�z
j = 1� 2c†jcj , �x

j =
j�1Y

l=�1
(1� 2c†l cl )(cj + c†j) , (2)

where cj are fermion operators obeying canonical anticommutation relations {c†j , ck} = �j,k. Setting aside the issue
of boundary conditions the Hamiltonian takes the form

H(h) =� J
1X

j=�1
(c†j � cj)(cj+1 + c†j+1)� Jhcjc

†
j � c†jcj . (3)

This is diagonalized by a Bogoliubov transformation

cj =

Z ⇡

�⇡

dk

2⇡
e�ikj

h
cos(✓k/2)↵k + i sin(✓k/2)↵

†
�k

i
, (4)

where {↵k,↵†
p} = �p,k and the Bogoliuobov angle is

ei✓k =
h� eik

p
1 + h2 � 2h cos k

. (5)

The Hamiltonian takes the form

H(h) =

Z ⇡

�⇡

dk

2⇡
"(k)


↵†
k↵k �

1

2

�
, (6)

where the dispersion relation is given by

"(k) =2J
p

1 + h2 � 2h cos(k). (7)

The ground state of H(h) is equal to the Bogoliubov vacuum state defined by

↵k |0i = 0. (8)

B. Full Counting Statistics and Generating Function

We are interested in the properties of the smooth and staggered components of the transverse magnetization of a
chain segment of length `. These are defined as

Sz
u(`) =

X̀

j=1

�z
j , Sz

s (`) =
X̀

j=1

(�1)j�z
j . (9)

vk =
dϵ(k)

dk
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How well does this work?

λ=0.1, ℓ=200, h0=0, h=0.2

→ Compare to numerically exact results.

Not bad.

Slight caveat: when              becomes very small as a fn of λ our 
approximation becomes poor. Not a problem for getting the PD.

χ(u)(λ, ℓ, t)



h0=3, h=0.2
h010

even/odd structure that

washes out over time

“Transverse field quench”: prepare system in GS of H(h0), 

time evolve with H(h)



Summary

1. Full counting statistics for subsystems can be interesting;  

can be universal at critical points.

2. FCS is not easy to calculate analytically.

3. FCS in ground state of quantum critical XXZ chain

4. FCS of transverse magnetisation in TFIM in equilibrium & 

after quantum quenches

5. FCS after Neel quench in XXZ: melting of LRO

Many open questions: 


• Subleading scaling functions in ground state of XXZ?


• Order-parameter PDF for TFIM in equilibrium/after QQs?


• How to get PDF’s from Bethe Ansatz?


• …


