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Outline

I Motivational examples (multi-species ASEP and coloured bosons).

I 1: Non-symmetric rational functions and their properties.

I Fundamental Uq(ŝln+1) vertex model.
I Non-symmetric rational functions fµ and gµ .
I Transfer matrix Gµ/ν .
I Summation identities involving fµ , gµ and Gµ/ν .
I Orthogonality relations.
I An integral formula for Gµ/ν and the ASEP limit.

I 2: Non-symmetric Hall–Littlewood polynomials and distribution matches.

I Fusion of the Uq(ŝln+1) vertex model.
I Non-symmetric Hall–Littlewood polynomials, Eµ .
I Hall–Littlewood processes.
I A remarkable distribution match.

I 3: Non-symmetric Macdonald polynomials; no time today!
I Cherednik–Dunkl operators and their eigenaction.
I A deformation of the partition function for non-symmetric Hall–Littlewood polynomials.
I Lattice model construction of non-symmetric Macdonald polynomials.



Motivation: the multi-species ASEP
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I A configuration of the multi-species ASEP is given by

η(t) = {. . . , η−1(t), η0(t), η1(t), . . . }, ηi(t) ∈N.

I 0 indicates an unoccupied site, and an integer j > 1 indicates a particle of colour j.
I Let {ηi−1, ηi , ηi+1} be the occupation data for the site i and its two neighbours, at

some point in time. This site is assigned two exponential clocks: a left clock of rate
q · 1ηi>ηi−1 and a right clock of rate 1ηi>ηi+1 .

I When the left clock rings, the occupation data is updated as

{ηi−1, ηi , ηi+1} 7→ {ηi , ηi−1, ηi+1}.

I When the right clock rings, the occupation data is updated as

{ηi−1, ηi , ηi+1} 7→ {ηi−1, ηi+1, ηi}.



Motivation: coloured bosons
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I Particles arrive at site 1 of the lattice according to a Poisson process of rate r0. The
i-th particle to enter the system is assigned colour ti ∈ R>0, where ti is its time of
entrance.

I There is an exponential clock of rate ri ∈ R>0 attached to the i-th site of the lattice,
for each 1 6 i 6 M.

I When the i-th clock rings, 1 6 i 6 M− 1, the particle with maximal colour at
position i hops to position i + 1.

I When the M-th clock rings, the particle with maximal colour at position M exits the
system.



1: Fundamental Uq(ŝln+1) vertex model
I Our main focus will be a higher-rank extension of the six-vertex model. It is a

model of vertices of the form

Rz(i, j; k, `) = x©

y©

j `

i

k

where i, j, k, ` ∈ {0, 1, . . . , n}, z = y/x.

I The model has a basic conservation identity:

Rz(i, j; k, `) = 0, unless {i} ∪ {j} = {k} ∪ {`}.
I The non-zero weights are simple rational functions of the spectral parameter z and

quantum parameter q:
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1: Fundamental Uq(ŝln+1) vertex model

I The model has a sum-to-unity property:

∑
06k,`6n

j `

i

k

= 1, ∀ i, j ∈ {0, 1, . . . , n}.

With mild assumptions on the parameters z and q (that ensure positivity), this
allows us to construct discrete-time Markov processes from the model.

I The model satisfies the Yang–Baxter equation:
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for all fixed i1, . . . , i3, j1, . . . , j3 ∈ {0, 1, . . . , n}.



1: Non-symmetric rational functions fµ and gµ
I In what follows, all vertical lines carry a trivial rapidity variable (= 1):
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I Let µ = (µ1, . . . , µn) be a vector of pairwise-distinct natural numbers (a strict
composition). We define fµ as a partition function in our vertex model:

fµ(x1, . . . , xn) :=

x1©
x2©

xn©
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Colour i exits at position µi .



1: Non-symmetric rational functions fµ and gµ

I We can also consider 90° rotations of the vertices:
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I We define gµ as a partition function in our rotated vertex model:

gµ(x1, . . . , xn) :=
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Colour i enters at position µi .



1: Transfer matrix Gµ/ν

I We will define one more type of partition function, which plays the role of a
multivariate transfer matrix.

I Let µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) be two strict, natural-number
compositions, with µi > νi for all i ∈ {1, . . . , n}. We define Gµ/ν as follows:

Gµ/ν(x1, . . . , xp) :=

x1©

x2©

xp©
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Colour i enters at position µi ,
and exits at position νi .

I The value of p should be sufficiently large, but is otherwise unrelated to n.



1: Summation identities

I Let (x1, . . . , xn) and (y1, . . . , yp) be two alphabets which satisfy the technical
constraint ∣∣∣∣∣ xi − 1

xi − q
· q ·

1− yj

1− qyj

∣∣∣∣∣ < 1, ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.

I We have the following skew Cauchy summation identity:

∑
µ

fµ(x1, . . . , xn)Gµ/ν(y1, . . . , yp) =
n

∏
i=1

p

∏
j=1

xi − yj

xi − qyj
· fν(x1, . . . , xn),

where the summation is taken over all length-n, strict compositions
µ = (µ1, . . . , µn).

I The proof makes use of the Yang–Baxter equation of the model.



1: Summation identities

I Introduce a function g∗µ which differs from gµ by an overall multiplicative factor:

g∗µ(x1, . . . , xn) :=
qn(n+1)/2

(q− 1)n · gµ(x1, . . . , xn).

I Let (x1, . . . , xn) and (y1, . . . , yn) be two alphabets which satisfy the technical
constraint ∣∣∣∣∣ xi − 1

xi − q
· q ·

1− yj

1− qyj

∣∣∣∣∣ < 1, ∀ i, j ∈ {1, . . . , n}.

I We have the following summation identity of Mimachi–Noumi type:

∑
µ

fµ(x1, . . . , xn)g∗µ(y1, . . . , yn) =
n

∏
i=1

qyi

qyi − xi
∏

n>i>j>1

xi − yj

xi − qyj
,

where the summation is over all length-n, strict compositions µ = (µ1, . . . , µn).

I The proof makes use of the Yang–Baxter equation of the model.



1: Orthogonality
I Consider n positively-oriented, q-nested integration contours as shown below:

0

C1Cn−1Cn

• • ••
qn−1 qn−2

· · ·

1

I The rational functions fµ and g∗ν satisfy the following orthogonality relation:

(
1

2π
√
−1

)n ∮
C1

dx1

x1
· · ·

∮
Cn

dxn

xn

∏
16i<j6n

(
xi − xj

xi − qxj

)
fµ(qx1, . . . , qxn)g∗ν(x1, . . . , xn) = 1µ=ν.

I The proof is long and complicated!



1: Spectral decomposition of Gµ/ν

I It is now very easy to combine the skew Cauchy identity and the orthogonality
relation to obtain the following formula for our transfer matrix:

Gµ/ν(y1, . . . , yp) =
q−np

(2π
√
−1)n

∮
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dx1

x1
· · ·

∮
Cn

dxn

xn

∏
16i<j6n

(
xi − xj

xi − qxj

)
n

∏
i=1

p

∏
j=1

qxi − yj

xi − yj
fν(qx1, . . . , qxn)g∗µ(x1, . . . , xn),

with the same integration contours as previously.

I So far all rational functions were indexed by natural-number compositions. It is
easy to extend to integer compositions by noting a simple shift property of the
functions:

For all µ ∈Nn and k > 0 there holds

fµ+kn (x1, . . . , xn) =
n

∏
i=1

(
xi − 1
xi − q

)k
fµ(x1, . . . , xn),

g∗µ+kn (x1, . . . , xn) =
n

∏
i=1

(
q · 1− xi

1− qxi

)k
g∗µ(x1, . . . , xn).



1: Spectral decomposition of Gµ/ν

I For strict compositions µ ∈ Zn, we then define

fµ(x1, . . . , xn) :=
n

∏
i=1

(
xi − q
xi − 1

)k
fµ+kn (x1, . . . , xn),

g∗µ(x1, . . . , xn) :=
n

∏
i=1

(
q−1 · 1− qxi

1− xi

)k
g∗µ+kn (x1, . . . , xn),

where k is sufficiently large such that µ + kn ∈Nn.

I The stated formula for Gµ/ν continues to hold for arbitrary strict compositions
µ, ν ∈ Zn:

Gµ/ν(y1, . . . , yp) =
q−np
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∏
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)
n
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∏
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qxi − yj

xi − yj
fν(qx1, . . . , qxn)g∗µ(x1, . . . , xn).



1: Reduction to ASEP

I Let us study the 90°-rotated vertex weights in the case when all rapidity variables
take the form x = 1− ε(1− q), where ε > 0 is small. The weights become
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where we only show O(ε) dependence.

I Fix a parameter t ∈ R>0 and two strict compositions µ, ν ∈ Zn. We find that

lim
ε→0

Gµ/(ν−pn)(y1, . . . , yp)
∣∣∣

p 7→t/ε

∣∣∣
yi 7→1−ε(1−q)

= PASEP
t (µ→ ν),

where the right hand side is the probability of being in state ν at time t, given that
the system was initialized in state µ.



1: Reduction to ASEP

I Performing this limit in the explicit formula for Gµ/(ν−pn), we obtain all ASEP
transition probabilities:

PASEP
t (µ→ ν) =

1
(2π
√
−1)n

∮
C1

dx1

x1
· · ·

∮
Cn

dxn

xn

∏
16i<j6n

(
xi − xj

xi − qxj

)
n

∏
i=1

exp
[

(1− q)2xit
(1− xi)(1− qxi)

]
fν(qx1, . . . , qxn)g∗µ(x1, . . . , xn).

I Explicit formulae for fν and g∗µ (as sums over the symmetric group) exist, but are
rather complicated.

If we assume that µ1 > · · · > µn and ν1 < · · · < νn (so that the particles have totally
reversed their order after time t), then both fν and g∗µ factorize.



2: Fusion and higher-spin vertex models

I The fusion procedure (in the sense of Kulish–Reshetikhin–Sklyanin) makes use of
rows of vertices in the Uq(ŝln+1) model:

Ry/x

(
(i1, . . . , iM), j; (k1, . . . , kM), `

)
:= j `

i1

k1

i2

k2

· · ·

· · ·

iM

kM

where the spectral parameters form a geometric progression in q:(
qM−1 y

x
, . . . , q

y
x

,
y
x

)
.

I From this, one defines

L(M)
y/x (I, j; K, `) :=

1
Zq(M; I) ∑

C(i1 ,...,iM)=I
C(k1 ,...,kM)=K

qinv(i1 ,...,iM)Ry/x

(
(i1, . . . , iM), j; (k1, . . . , kM), `

)
.



2: Fusion and higher-spin vertex models
I The vertex weights that one obtains in this way depend on M only via qM . One

may analytically continue qM to C, writing qM = s−2.

I We then consider the following sequence of limits:

j `

I

K

x := (−s)−1`>0L(M)
y/x (I, j; K, `)

∣∣∣
y→s

∣∣∣
qM→s−2

∣∣∣
s→0

.

I The weights of this model can be computed explicitly:
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I+−ji

1 x(1− qIj )qI[j+1,n] 0

where it is assumed that 1 6 i < j 6 n.



2: Fusion and higher-spin vertex models

I The model satisfies the following Yang–Baxter (RLL) equation:

∑
06k1 ,k26n

∑
K∈Nn

x©

y© x
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2: Non-symmetric Hall–Littlewood polynomials, Eµ
I In a similar vein to before, we define

Eµ(x1, . . . , xn) :=

x1 · · · · · · x1

x2 · · · · · · x2

xn · · · · · · xn

...

...
...

...

0 · · · · · · 0

µ(0) · · · · · · µ(N)

0

0

...

...

0

1

2

...

...

n

I Here we have defined

N = max
16i6n

(µi), µ(j) =
n

∑
i=1

1(µi = j)ei .

I These functions obey two (uniquely-determining) properties:

Eδ(x1, . . . , xn) =
n

∏
i=1

xδi
i , δ = (δ1 6 · · · 6 δn).

Ti · Eµ(x1, . . . , xn) = Esi ·µ(x1, . . . , xn), µi < µi+1, Ti := q− xi − qxi+1

xi − xi+1
(1− si).



2: Hall–Littlewood processes
I The ascending Hall–Littlewood process is a discrete-time Markov process of

growing Young diagrams:
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•

•

•

•
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•
time
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I Alternatively, it can be viewed as a probability measure on Gelfand–Tsetlin
patterns:

PHL
m,n

(
λ(1) ≺ · · · ≺ λ(n)

)
:=(

n

∏
i=1

Q
λ(i)/λ(i−1) (xi ; q)

)
P

λ(n) (y1, . . . , ym; q)
n

∏
i=1

m

∏
j=1

1− xiyj

1− qxiyj
.



2: Non-symmetric Hall–Littlewood processes
I One can extend this probability measure to the non-symmetric case, as follows:

Pns
m,n(µ, λ) := Q

µ+/λ(1) (x1) ·
n

∏
j=2

Q
λ(j−1)/λ(j) (xj) · Eµ(y1, . . . , ym)

n

∏
i=1

m

∏
j=1

1− xiyj

1− qxiyj
.

I The measure satisfies the sum-to-unity property:

∑
µ

∑
λ

Pns
m,n(µ, λ) = 1.

I This can be proved by making use of the branching rule for symmetric
Hall–Littlewood polynomials:

Qλ(x1, . . . , xn) = ∑
ν≺λ

Qλ/ν(x1)Qν(x2, . . . , xn),

and the symmetrization property of non-symmetric Hall–Littlewood polynomials:

∑
µ:µ+=λ

Eµ(y1, . . . , ym) = Pλ(y1, . . . , ym).

I One can proceed to compute the averages of observables by using the action of
Cherednik–Dunkl operators.



2: A remarkable distribution match

I The observables that will interest us will be the zero set z(µ) of the composition
(µ1, . . . , µm), defined as

z(µ) = {1 6 i 6 m : µi = 0},

and a further set

ζ(µ, λ) = {1 6 j 6 n : `(λ(j−1))− `(λ(j)) = 0}, λ(0) ≡ µ+, λ(n) ≡ ∅,

which records the instances where neighbouring partitions in the extended
Gelfand–Tsetlin pattern µ+ � λ(1) � · · · � λ(n−1) � ∅ have the same length.

I In particular, we define

Pm,n(I ,J ) := ∑
µ

∑
λ

Pns
m,n(µ, λ) · 1z(µ)=Ī · 1ζ(µ,λ)=J ,

which is the joint distribution of the random variables z(µ), ζ(µ, λ) in the pair
(µ, λ) sampled with respect to the non-symmetric Hall–Littlewood process.



2: A remarkable distribution match

I Compare this against the following probability distribution, of our starting vertex
model in a quadrant:

Zm,n(I ,J ) := ∑

n

2

1

Ik}<· · ·<{I1positions

ym· · · · · ·y1

x−1
1

x−1
2

...

x−1
n

colours {J1, . . . , J`}

Theorem
Fix two integers m, n > 1 and two sets I = {1 6 I1 < · · · < Ik 6 m} and
J = {1 6 J1 < · · · < J` 6 n} whose cardinalities satisfy k + ` = n. The following
equality of distributions holds:

Pm,n(I ,J ) = Zm,n(I ,J ).


