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Outline

> Motivational examples (multi-species ASEP and coloured bosons).

> 1: Non-symmetric rational functions and their properties.

Fundamental Uq(s/[,,:) vertex model.
Non-symmetric rational functions f, and gj,.
Transfer matrix Gy /.

Summation identities involving f,, g and G,/ .
Orthogonality relations.

>
>
>
»>
>
> An integral formula for G/, and the ASEP limit.

> 2: Non-symmetric Hall-Littlewood polynomials and distribution matches.

Fusion of the Uq(s-/[,::l) vertex model.
Non-symmetric Hall-Littlewood polynomials, E,.
Hall-Littlewood processes.

»
>
»>
> A remarkable distribution match.

> 3: Non-symmetric Macdonald polynomials; no time today!

> Cherednik-Dunkl operators and their eigenaction.
> A deformation of the partition function for non-symmetric Hall-Littlewood polynomials.
> Lattice model construction of non-symmetric Macdonald polynomials.



Motivation: the multi-species ASEP

> A configuration of the multi-species ASEP is given by

n(t) ={..ona®),mot),m(t),... 5 mit) €N

> 0 indicates an unoccupied site, and an integer j > 1 indicates a particle of colour j.

> Let {#i_1,7i,1i+1} be the occupation data for the site 7 and its two neighbours, at
some point in time. This site is assigned two exponential clocks: a left clock of rate
q-1y,>y,_, and a right clock of rate 1;;,>, ;-

> When the left clock rings, the occupation data is updated as
{rivmi i} = i mia k-
> When the right clock rings, the occupation data is updated as

{ni—tmioniy } = i, i i}



Motivation: coloured bosons

el

entr.ance 1 2 e M exit

> Particles arrive at site 1 of the lattice according to a Poisson process of rate rg. The
i-th particle to enter the system is assigned colour t; € R, where ¢; is its time of
entrance.

> There is an exponential clock of rate 7; € IR attached to the i-th site of the lattice,
foreach1l <i< M.

> When the i-th clock rings, 1 < i < M — 1, the particle with maximal colour at
position i hops to position i + 1.

> When the M-th clock rings, the particle with maximal colour at position M exits the
system.



1: Fundamental U,(sl,41) vertex model

> Our main focus will be a higher-rank extension of the six-vertex model. It is a
model of vertices of the form

k

R:(i, ik, €) = © ‘" where i,j,k(€e€{0,1,...,n}, z=y/x.

®
> The model has a basic conservation identity:
R.(i,j;k,£) =0, unless {i} U{j} = {k} U{¢}.

> The non-zero weights are simple rational functions of the spectral parameter z and
quantum parameter g:
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1: Fundamental Uq(s/ln-z) vertex model

> The model has a sum-to-unity property:

k

i . =1, Vije{0,1,...,n}.
o<kl<n

i
With mild assumptions on the parameters z and g (that ensure positivity), this
allows us to construct discrete-time Markov processes from the model.

> The model satisfies the Yang-Baxter equation:

@ [1 kz jZ @ il kl ”
ks _ ks
J - 2 @ i

0<ky ko k3<n 2k 0<ky ko k3 <n ke i

for all fixed iy, ...,13,j1,...,j3 € {0,1,...,n}.



1: Non-symmetric rational functions f, and g,
> In what follows, all vertical lines carry a trivial rapidity variable (= 1):

i ] i
i i i i i j

i i ]
1 q(x —1) (1-g)x
xX—q xX—q

i j
0<i<j<n i i i ;
x—1 (1—9q)
X—4q X—4q

> Let = (p1, ..., 1n) be a vector of pairwise-distinct natural numbers (a strict
composition). We define f, as a partition function in our vertex model:

state which encodes p

@n 0

fux, oo, x) = Colour i exits at position p;.
@2 0
@1 0



1: Non-symmetric rational functions f, and g,

» We can also consider 90° rotations of the vertices:

i i i
i i j j i i
1 q(1—x) (1-q)
1—gx 1—gx
i i
0<i<j<n ; ; j i
i i
1—x (1—q)x
1—gx 1—gx

> We define g, as a partition function in our rotated vertex model:

0 0 0 ovvvvnnn
@n 0

gy(x1,~ e Xp) = . . Colour i enters at position p;.
®2 0
@1 0

state which encodes u



1. Transfer matrix G,/

> We will define one more type of partition function, which plays the role of a
multivariate transfer matrix.

» Let u = (p1,...,4n) and v = (v1,...,v,) be two strict, natural-number
compositions, with y; > v; for alli € {1,...,n}. We define G}l /v as follows:

state which encodes v

® 0 0

o Colour i enters at position p;,

GV/V (xl’ s xp) T and exits at position v;. l
® 0 0
@0 0

state which encodes u

> The value of p should be sufficiently large, but is otherwise unrelated to n.



1: Summation identities

> Let (xq,...,x;) and (y1,...,¥p) be two alphabets which satisfy the technical
constraint

Xj — 1 q 1-— ]/j

Xi—q © 1—qy;

<1, Vie{l,...,n}, je{l,...,p}

> We have the following skew Cauchy summation identity:

Xi—

14
Efu X1, %) Gy (Y1, - Yp) HH

Sfolxr, - xn),
i=1j=1 % WJ

where the summation is taken over all length-n, strict compositions

p= ({1, pin).

> The proof makes use of the Yang—Baxter equation of the model.



1: Summation identities

> Introduce a function g;; which differs from g by an overall multiplicative factor:

n(n+1)/2
8;(x1/~~~,xn) = W -gy(xl,...,x,,).

» Let (x1,...,x,) and (y1,...,yn) be two alphabets which satisfy the technical
constraint

x;i—1 q- 1-— Yj

xi—q  1—qy;

<1, Vije{l,...n}

> We have the following summation identity of Mimachi-Noumi type:

Zf x xn)85 (Y Yn) ﬁ i II S
1reves 1702y ’
! e N = X i X — Y

where the summation is over all length-n, strict compositions u = (p1, ..., in)-

> The proof makes use of the Yang—Baxter equation of the model.



1: Orthogonality

» Consider n positively-oriented, g-nested integration contours as shown below:

> The rational functions f, and g; satisfy the following orthogonality relation:

2/ —1 C X1 n Xn

i — x:
H ( L >fy(qxl,...,qxn)gj(xl,...,xn) = 1=y

1<i<j<n \ %~ 9%j

> The proof is long and complicated!



1: Spectral decomposition of G,/

> It is now very easy to combine the skew Cauchy identity and the orthogonality
relation to obtain the following formula for our transfer matrix:

_q" 7{ dxy % dxy
Gyt yy) = A7 da
v p) @erv=-1)rJo, x1 Joy x
4
y *
H ( qx1>HH Hfuolg, - S qxn) g (X1, Xn),

1<i<j<n i=1j=1 i —Yj

with the same integration contours as previously.

> So far all rational functions were indexed by natural-number compositions. It is
easy to extend to integer compositions by noting a simple shift property of the
functions:

For all € IN" and k > 0 there holds




1: Spectral decomposition of G,/

> For strict compositions y € Z", we then define

f}l(xl,. cXy) = H (ﬂ> futin (x1,--.,%n),

i=1 \Xi

n

* o1 1—gqx; k *
gn(x1,. ., xn) :zH(q L. q") gwrkn(xl,...,xn),

i=1 1—-x

where k is sufficiently large such that p + k" € IN".

> The stated formula for G, continues to hold for arbitrary strict compositions
u,veZ":

g dxy % dxy
G peYp) = o= )
wv(Y - Yp) Q=D Jo, 11 Je, x

X; 1 qx; — .
I ( )HH U g g o )
1<i<j<n —q%j Xi

=1j=1 i




1: Reduction to ASEP

> Let us study the 90°-rotated vertex weights in the case when all rapidity variables
take the form x = 1 — ¢(1 — g), where € > 0 is small. The weights become

i i j

0<i<j<n : . ; .

where we only show O(e) dependence.
> Fix a parameter t € R-o and two strict compositions y, v € Z". We find that

=PASEP (= v),

lli% GV/(v—p”)(ylf' . "yp))

pt/elyi—sl—e(1—q)

where the right hand side is the probability of being in state v at time ¢, given that
the system was initialized in state .



1: Reduction to ASEP

> Performing this limit in the explicit formula for G, /( , we obtain all ASEP

v=p")
transition probabilities:

s 1 pdu o fodx

PR (5 v) = ny=T) Je, m }{n xn
. n — 0)2y.

H (xl xj)l_[exp {%]fv(qxl,...,qx,,)g;(xl,...,xn).

1<i<j<n \ Y — 9% ) i1 —x)(1—qx

> Explicit formulae for f, and g} (as sums over the symmetric group) exist, but are
rather complicated.

If we assume that iy > - -+ > py and v1 < - -+ < vy (so that the particles have totally
reversed their order after time ¢#), then both f, and g, factorize.



2: Fusion and higher-spin vertex models

> The fusion procedure (in the sense of Kulish-Reshetikhin-Sklyanin) makes use of
rows of vertices in the Uy (5T,,;) model:

ko k km
Ry/x((il,...,Z'M),]';(kl,...,kM),f) = j ¢
i i im

where the spectral parameters form a geometric progression in g:

(qulz,...,qZ Z).

p
x x’x
» From this, one defines

(M)(I,j;K,Z) =

L [ —
y/x Zy(M; 1)



2: Fusion and higher-spin vertex models

> The vertex weights that one obtains in this w I\/PI depend on M only via ¢M. One
may analytically continue g™ to C, writing g .

> We then consider the following sequence of limits:

K

iox = LK 0|

yoslgM 521550
1
> The weights of this model can be computed explicitly:
1 1 1
0 0 i i 0 i
1 1 I
1 qu[i+l,n] x(1— qli)ql[i+l,n]
1i+ 1:;* 1]_4;7
i 0 i i i i
1 I I
Iy I
1 x(1 - gh)qlo 0

where it is assumed that 1 <7 < j <



2: Fusion and higher-spin vertex models

> The model satisfies the following Yang-Baxter (RLL) equation:

0<ky ky<n KEN"

®
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0<ky kp<n KEN"
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2: Non-symmetric Hall-Littlewood polynomials, E,

» In a similar vein to before, we define

#(0) u(N)
T Xn 0
Ey(x1,..., %) ==
2 X2 X2 0
1 x1 X1 0
0 Co 0

» Here we have defined

N=max(u), ()= Y1 = fles

1<isn
> These functions obey two (uniquely-determining) properties:

n .
Es(xi,...,xn) = [[x),  6=(61< - <n)
i=1

Ti Ep(x1,- . Xn) = Espp (X1, o, %n), i <pina,  Tii=q-— Xi — Xi+1
i At

Xi — 4%it1 (1—s;



2: Hall-Littlewood processes

> The ascending Hall-Littlewood process is a discrete-time Markov process of
growing Young diagrams:

A
AP

5 Al AQ
AP

A®

time

> Alternatively, it can be viewed as a probability measure on Gelfand-Tsetlin
patterns:

]Plr;tl,l;z <)\(1) <= /\(”)) =

n n m 1 _ xly]
[1Q0 60 xi9) | Py (s oy ) TTT T T
i i=1j=1 qxiyj



2: Non-symmetric Hall-Littlewood processes

> One can extend this probability measure to the non-symmetric case, as follows:

mo1— xy;
Pﬁts,n(]'{’A) = Vr/)‘ X1 HQA 1) /A0) (x]) Ell Y- s Ym Hnlf ]'
i=1j=1 qxiyj

> The measure satisfies the sum-to-unity property:

LY Pl d

> This can be proved by making use of the branching rule for symmetric
Hall-Littlewood polynomials:

Q/\(xlr”-rxﬂ) = Z Q/\/V(xl)Qv(er~~~/xn)r

v=<A

and the symmetrization property of non-symmetric Hall-Littlewood polynomials:

Y Eu(i-ym) =Pa(y - Ym)-
wut=A

> One can proceed to compute the averages of observables by using the action of
Cherednik-Dunkl operators.



2: A remarkable distribution match

> The observables that will interest us will be the zero set z(p) of the composition
(#1,---, Mm), defined as

and a further set
={1<j<n: AUy —pADy =0}, A =pt, A =g,
j I

which records the instances where neighbouring partitions in the extended
Gelfand-Tsetlin pattern ut = A1) = ... = A(*=1) » & have the same length.

> In particular, we define

Pyn(Z,T) : ZZPM WA L=z Tgua-g

which is the joint distribution of the random variables z(u), {(i, A) in the pair
(u, A) sampled with respect to the non-symmetric Hall-Littlewood process.



2: A remarkable distribution match

> Compare this against the following probability distribution, of our starting vertex
model in a quadrant:

positions{l; « ... < I}
x;l _”) T
Zun(Z,T) =), —_ colours {J1,...,J¢}
! — —
Xt BEN
yioo e Ym

Theorem

Fix two integers m,n > 1and twosets Z = {1 < ; < --- < Iy < m} and

J ={1<]1 <--- <]y < n} whose cardinalities satisfy k + ¢ = n. The following
equality of distributions holds:

]Pm,n (Z/ j) = Zm,n (I, J)'



