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• TASEP and ASEP (with particles moving in two directions) were introduced in 
1969-1970, independently in biology [C. MacDonald, J. Gibbs, and A. Pipkin ‘69] 
and probability [Spitzer ’70] 

• In these 50 years, we understood a lot about TASEP and related systems (in the 
Kardar-Parisi-Zhang universality class), including limit shapes and fluctuations 
with general initial data


• Yet new asymptotic results are added every year (KPZ fixed point, Airy sheet, 
directed landscape, …). Let us give one basic example of asymptotics…



Parabola limit shape [Rost 1981] 
Fluctuations [Johansson 2000]
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Definition. Backwards Hammersley process

• The Markov chain lives on left-packed configurations 
�  


• Each hole has an independent exponential clock with rate equal to 
the number �  of particles to its right, � .


• When the clock at a hole rings, the leftmost of the particles that are 
to the right of the hole instantaneously jumps into this hole


• Because total rate of jump is proportional to the size of the gap, this 
is a discrete space inhomogeneous version of the Hammersley 
process [Hammersley ’72], [Aldous-Diaconis ‘95]

x1 > x2 > x3 > …

m ℙ(wait > s) = e−m⋅s, s > 0



Running TASEP back in time
Theorem [P.-Saenz]. Let �  be the distribution of the TASEP (with step 
IC) at time � . Let �  be the backwards Hammersley Markov semigroup. 
Then � , i.e., � .

μt
t Lτ

μtLτ = μt⋅e−τ ∑ ⃗x
μt( ⃗x )Lτ( ⃗x , ⃗y ) = μt⋅e−τ( ⃗y )

Simulation joint with Haoyu Li 
(UVA undergraduate)

Note. Theorem does 
not apply to multitime 

distributions
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Equilibrium dynamics on TASEP
Corollary. Run in parallel: 


• The usual TASEP;


• The backwards Hammersley process slowed down by a factor of � 


The combined process preserves the TASEP distribution � .
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Strategy of the proof
• TASEP is mapped to Schur measures (e.g. via Robinson-

Schensted-Knuth correspondence, known since 1990s)


• Schur measures in a “bosonic” interpretation have a vertex 
model structure (�  model with �  and infinite 
vertical spin)


• Vertex weights satisfy the Yang-Baxter equation


• The Yang-Baxter equation can be turned into a stochastic 
map


• This stochastic map leads to the backwards Hammersley 
process and the theorem

Uq( ̂𝔰𝔩2 ) q = 0



Schur vertex model and Yang-Baxter (RLL) identity
A higher spin six vertex model with �  and infinite vertical spinq = 0

Yang-Baxter equation

=
1 u u 1

Vertex weights

Cross vertex weights

Sum over �  of the left-hand side 
is equal to the sum over �  of the 
right-hand side

g1, j1, j2
g2, j′ �1, j′�2
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Schur symmetric polynomials
Let �  be a partition with �  parts, 
� , � . 


The Schur polynomial �  is defined as 
the partition function of the vertex model:

λ N
λ = (λ1 ≥ λ2 ≥ … ≥ λN ≥ 0) λi ∈ ℤ

sλ(u1, …, uN)
1 u u 1

Vertex weights

The partition function �  is symmetric thanks to the Yang-Baxter equationsλ(u1, …, uN)

Another formula:


�sλ(u1, …, uN) =
det[xλj+N−j

i ]N
i, j=1

det[xN−j
i ]N

i, j=1



Bijectivisation of the Yang-Baxter equation
Let �  be finite sets and�      (with positive terms)


 
A bijectivisation (coupling) of this identity is a family of transition probabilities

�  and � , satisfying


� 


for all � .


If all probabilities are equal to �  or �  and � , then 

this is a usual bijection. 

A, B ∑
a∈A

w(a) = ∑
b∈B

w(b)

p(a → b) p′�(b → a)

w(a)p(a → b) = w(b)p′�(b → a)

a ∈ A, b ∈ B

0 1 |A | = |B |
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Example:    1 + 3 = 2 + 2

(independent)

(maximally 
dependent)
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leads to 

For the Yang-Baxter equation:



Bijectivisation in the vertex model
With � , denote the distribution of �  by 


� 


(where � ).

u > v > 0 κ

Pu,v(ϰ ∣ λ, μ) ∝ u|ϰ|−|μ|v|λ|−|ϰ| ∝ ( u
v )

|ϰ|

|ϰ | = ϰ1 + … + ϰM



Lemma. For � , the bijectivised YBE maps 

the measure �  to �  and acts as follows,  

where � :


u > v
Pu,v Pv,u

α = v/u

Same map with right jumps maps �  back to �  

(so, where you jump depends on the order of � ).

Pv,u Pu,v
u, v
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Remark. Action of the symmetric group �SN
Let �  be distinct spectral 
parameters. With each �  we 
associate a measure �  on configurations 
with top condition �  and spectral 
parameters � . 


The Markov operators or �  and �  with 
appropriate �  act by transpositions on � . 

u1, …, uN > 0
σ ∈ SN

𝕄σ
λ

uσ(1), …, uσ(N)

L( j)
α R( j)

α
α σ
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In particular, the sequence � , 
� , can be mapped to its reversal 
�  by only applying the left 
jump operators � , totally �  of them


(lozenge tilings are in bijection 
with vertex configurations)

(1,q, q2, …, qN−1)
0 < q < 1
(qN−1, …, q2, q,1)

L( j) (N
2 )

Simulation joint with Edith Zhang 
(UVA undergraduate)

�q = 0.7
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Simulation joint with Edith Zhang 
(UVA undergraduate)

�q = 0.95

Limit shapes of �  lozenge tilings: [Cohn-
Kenyon-Propp ’00], [Kenyon-Okounkov ’05]

qvol
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TASEP at the edge of a vertex model
Via Robinson-Schensted-Knuth (since 1990s), 
[O’Connell ’03], also [Borodin-Ferrari ’08]

1 u u 1

Vertex weights

� ,


where �    (�  times)

Prob[λ(N)(t) = λ] = e−(u1+…+uN)tsλ(u1, …, uN)sλ(ρt)

sλ(ρt) := lim
K→+∞

sλ(
t
K

, …,
t
K

) K

Then �  coming from this vertex model are identified with particle 
coordinates of TASEP with speeds �  at time � . 

yi(t)
ui t



Edge of a vertex model and � . Finishing the proofL( j)

Take the spectral parameters (speeds 
in TASEP) to be � , where 
� .


Apply the left jumps in the vertex 
model in this order. 


Then the measure �  
turns into � , and

1,q, q2, …
0 < q < 1

sλ(1,q, q2, …)sλ(ρt)
sλ(q, q2, q3, …)sλ(ρt)

�sλ(q, q2, q3, …)sλ(ρt) = q|λ|sλ(1,q, q2, …)sλ(ρt) = sλ(1,q, q2, …)sλ(ρq⋅t)

which uses homogeneity of the Schur polynomials.


We thus proved:
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We thus proved:

Theorem. Denote by �  the measure of the TASEP with � -speeds, and �  the 
combination of the left jump operators as above. Then � .


Applying �  many times and taking Poisson-like limit �  leads to the main theorem.

μ(q)
t q 𝕃q

μ(q)
t 𝕃q = μ(q)

q⋅t

𝕃q q → 1



Remark. Back in time in a two-dimensional model
The Borodin-Ferrari Anisotropic KPZ dynamics (arXiv:0804.3035 [math-ph]) on two-
dimensional interlacing arrays also has a reversal.

Forward dynamics is defined via push-block rules: 


• Each vertical arrow has an independent exponential clock 
with rate � . When the clock rings, the arrow attempts to 
move to the right by 1 (in its horizontal line)


• If the jumping arrow is blocked from below, there is no 
jump


• If the arrow’s jump violates interlacing with above, pushing 
is forced

1



Remark. Back in time in a two-dimensional model

Simulation by Patrik Ferrari https://wt.iam.uni-bonn.de/ferrari/research/jsanimationakpz/

https://wt.iam.uni-bonn.de/ferrari/research/jsanimationakpz/
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Remark. Back in time in a two-dimensional model
The reversal dynamics is defined as follows. Each possible(*) hole at each level �  has 
an independent exponential clock of rate � . When the clock rings, the hole attracts the 
closest of its right neighbors.


Like for the TASEP reversal (backwards Hammersley), some care is needed to define 
the dynamics as dependence propagates “from infinity” (“possible holes” depend on 
the lower and the upper levels); and there are infinitely many jumps in finite time. 


For push-block initial data this is possible, and we get the time reversal �

k
k

Mt𝕃τ = Mt⋅e−τ



Consequences for TASEP Theorem. �μtLτ = μt⋅e−τ

• This is a new structural result for TASEP with step initial data


• Likely characterizes the distribution �  by a stationary dynamics (one 
has to prove convergence to the distribution � 


• Leads to new identities for expectations under � , for example:


             Here �  is the number of particles to the right of zero, and �  is  
             an arbitrary function.


• The presence of “two times” in TASEP raises questions about fluctuation 
exponents. For example, if we run TASEP for time �  and stationary 
dynamics for time � , what are the combined fluctuation exponents?


• Limit of stationary dynamics to the top Airy line?


• Other initial data?

μt
μt)

μt

ht G( ⋅ )

t
s



Summary. More questions than answers
• Found a new interesting property of TASEP


• Characterization of nonequilibrium distributions by means of stationary 
dynamics


• How general is this effect?  
- Seems that it applies (in one way or another) to most integrable 
particle systems in the KPZ universality class: stochastic six-vertex 
model, random polymers, edge of random matrices…


• New asymptotic questions - do some known good tools work?


• Time reversal applies to some two-dimensional models, too


• Any other stochastic applications of YBE? Yes, at least [Grimmett-
Manolescu 2014] in critical percolation; and domino shuffling for Aztec 
diamond [Elkies-Kuperberg-Larsen-Propp 1992] are essentially based on 
bijectivisations of YBE


