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Fig. 1.3. Diagram of growth effects including diffusion, shadowing, and reemission
that may affect surface morphology during thin film growth. The incident particle
flux may arrive at the surface with a wide angular distribution depending on the
deposition methods and parameters.
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KPZ growth

o Stochastic growth normal to the surface
o Kardar-Parisi-Zhang (KPZ) 1986
o Basic object: (random) height function h(x, t)

KPZ equation (nonlinear stochastic PDE):

d¢h(t,x) = J02h(t,x) + § (dxh(t,x))2+ &(t,x)

Claim:
Diffusion + non-linearity + space-time Gaussian white noise
correctly describes 1+1D surface growth

Realisation in liquid crystal growth: Takeuchi lab
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1+1D Growth

Takeuchi and Sasamoto, Tokyo 2017
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1+1D Growth

Flat

Flat initial conditions
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KPZ growth

Theorem (Non-Gaussian fluctuations)

h~vt+ct'? t—

Transformation to Stochastic Heat Equation (SHE):

h(t,x) :=logz(t,x).

0¢z(t,x) = %aiz(t,x) + &(t,x)z(t,x)
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Fluctuations

The Laplace transform formula for z(t, x) can be written as a Fredholm determinant

Theorem (Laplace transform of SHE)

E[eféz(t,o)} = det(I — KC)LZ(JI{+)

Ai(E +m)AI(E +n')dE.

Fgue (s) is the Tracy-Widom distribution of the Gaussian Unitary Ensemble of random matrix
theory.
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Universality

The Tracy-Widom distribution also appears in the asymmetric exclusion process on Z.
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FIGURE 4. ASEP particle configuration with possible jumps and rates denoted by arrows.

Let Ny (t) be the number of particles to have crossed a given site y after time t.

Let Qy(t) = t™Nv() with T = B and

Qy(t) — Qy_1(t)

T—1

Qy(t) =
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Fundamental solution of ASEP

Theorem (Fundamental solution of ASEP)

- . i — z k 1 X x5 +1
E[Qy(‘i)“'Qxd‘E)]Z%“'% H Z_ilejne#\(z,»]t (%Z)T) j oz,
j

Z
1<i<j<k 7t =1

Fluctuations of particle flow across the origin follow KPZ statistics given by the Tracy-Widom
distribution:

Theorem (Fluctuations of ASEP)

lim P
t—o0

(W > —s> — Faue(s).
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Summary

Ingredients:

o Integrable stochastic lattice model
o Observable expressed in terms of k-fold integral
o Asympotics for large k — Fredholm determinant

o Saddle point analysis

New results:

o Rank two model
o Dynamic poles in integral (from nested Bethe ansatz)

o Combination of Gaussian and GUE modes
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AHR model

Introduced by Arndt-Heinzl-Rittenberg, the transition rates are

Throughout we will take p + p/ =1 — factorised steady state.

time t

g
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Nonlinear Fluctuating Hydrodynamics

Continuity equation

ou(x,t) 4 Oj(u(x,t))

ot x =0

where u(x,t) = (p+, p—) and j(u) = (j4,j—) given by non-linear flows

p+(1—py —p-) +2p4p—,
—(1—=py—p-)p-—2pip-—.

Adding diffusion and noise, heuristic non-linear fluctuating hydrodynamics (NLFHD) leads to

Pcrossing (t) ~ Foue(s+)Fgauss(s—),

where s are eigenmodes.

Aim of this talk is to rigorously prove this.
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Green’s function

Let Z = X U § be coordinates of + and — particles.

Definition

The Green function satisfies the master equation
d
Z Mzz G(Z/,t);  t>0,
and initial condition
n m
G(%y;0) = Héxi X H Yj y?
i=1 j=
v

Explicit form can be determined by Bethe ansatz using boundary conditions:

Exclusion: G(x,x;y;t) = G(x,x+ 1;7;t),

Scattering: G(y;y+1;t) = qG(y+1;y +1;t) + pG(y;y; t).
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Green’s function

Initial conditions: assume x(j) <y, ie att =0all e particlesare totheleftofall o particles.

Final condition: x; > yy, i.e. attime tall o particles are to the left of all e particles.

Then

m

G(xj, Yk, t) ﬁ;l_[dz,l_ldwke/\tl—ll—lqZ]erWk

j=1 k=1 k=1j=1

j—1
zj —1\’ Xj 7x?71
><det<<2i1> z’ |z
A m—k B 0
xdet((t‘\%) Weyk>wzk i

with all contours around the origin, and with eigenvalue

/\:pZ(z;1f1)+q;(w T
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Current distribution: step initial condition

Given the following step initial condition

ntimes mtimes

——
...... ©0 - - @000 --00------,

Then
1

P(xq(t) 2s)= Y - Y > o) Glxghfykht),

X1=s Xn=Xp_1+1 Y1=—00 Yn=Yn_1+1

P(x1(t) 20) =

[T -z I mwvi—wollzr"[Iwe"

n m
At 1<i<i<n 1<k<l<m j=1 k=1
$TTdz T dwient ') e . ,
= [Tz = 0™ TTowe =TT TT (az + pwi)

j=1 k=1 j=1k=1

with all contours around the origin.
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Current distribution

o e”\' produces an essential singularity at origin: A = p ZJ_1 R DRA| 1 —1).
o Deform w-contours to lie around poles other than the origin

o Only (simple) poles at w = 1 give nonzero contribution

After evaluating the residues in w, we get

n

oz n—j
" H (zi ZJ)HZ]'
dz; g 1<i<j<n j=1
27 n n

j=1 11z —1)ﬂ+171H(qzj +p)m

j=1 j=1
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TASEP limit

Corollary

|

When n = moand p = q = 1/2 we retrieve the same distribution as for the single species TASEP under
step initial condition, i.e.

P 1 _ %Hd gtH1<1<)<n(X _xj)z

n,n, T\.' HJ 1(X) 71) s

where the contours are still around the origin and & = ZJ 1 (x )_1 —1).

This is made explicit by symmetrising and the simple change of variable z; = xj/(2 — x;).

From known analysis (Tracy-Widom) this probability converges to the GUE distribution as
n,t — oo.
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Step-Bernoulli condition

+—ese—ss-sdoooocoo-

Let the distance among positive particles be independently distributed with parameter p’,

Proposition

The total exchange probability Py m o (t) with Bernoulli initial data is given by

n m
Prm,p(t) = fj;Hdzj [Tdwkermix
j=1 k=1

n m

ot I (zi—2z) (wi—wi) [T 277 [wi!
k=1

1<i<j<n 1<k<1<m j=1

n n m ’

[Ttz =17 (1= p'z)) [Twic = D¥TTIT (a2 + pwi)

j=1 k=1 j=1k=1

with all contours around the origin.

The w-contours can be readily evaluated if n > m but not whenn < m
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Asymptotics

Non-linear fluctuating hydrodynamics (KPZ formalism) suggests a scaling limit of the form
n=jit+ ot!/3 4 pt/2
m = jot+yt'/3 4 5t'/2,

where j12, &, 3,7y, & are known functions of p’,and n < m.

Need to analyse

Prm,p(t) = ﬁ; . % factorised integrand

——
nxm

where n, m, t are large.

Trick: Convert to Fredholm determinant:

Prmp(t) = det(I — AB)mxm = det(I — BA) 2 g,

where n, m, t all occur as parameters in BA.
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Example

After symmetrising and deforming contours, P involves integrals of the form

2

j:LjE m oy e;\"‘tH1<k<z<m(W€* wi)
Hoa—1 [Ty wit(wie — D™ T (5 (1 + 1/wi )™

where A, = % Y g wy —1).

This expression can be written as

g_ ng d™w  [Ticksecm (T —wi/we) H gnm (Wi, 0)
o1 TTREswie TTeer (1 — ae/wi) gn,m(ax,0)

with

n
gn,m(W,X) = ( w ) fomewt/2’

and gy =1, 1<k m
Assuming first that |ay | < 1, the integral J can be written as a Fredholm determinant

J =det(I—K(x,y)).
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Example
The kernel
m—1
K(x,y) = b (x) b (y),
k=0
with
1 14+w\" w ke w2
b=t (52 (25) e
w " [1—w\*
WY (x :§ dw wxf2 <7> < > ewt/z,
0,—1 1 +w w
in which the pole at w = 1 is separated from the poles at w = —1,0.
We rewrite this integral
dw
d)k(x) :§ T fw)t
1 a7t

with k ~ m and
14+

f(w)t =nlog (

1
W) + (m — k1t 3log <%> —&4t"3log(w) — SWt,
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In the scaling limit, f (w) has the double saddle point at w* = p’/2:

-
N

Contours for ¢y (x), around 1, and Py (x); joint saddle at w* = p’/2.
fw)t = f(W )t —cqi(w—w)t"2 4 co(w—w )3t +...
Define the scaling variable v by

v
_mcs

*

w—w
The function f(w) behaves asymptotically as

f(w)t=f(w*)t — v — iV(K + g) + O(tf1/6)_
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This leads to
B, g1, (11738) ~ef VA (K T a)_

The scaled kernel therefore has the long time limit

Ke(&, Q) —>J:°Ai(K+a)Ai<K+c)d.<;:A(a,c) ast — oo.

Proposition

The functions ¢y and \py behave asymptotically as Airy functions. In the scaling limit the integral J
therefore satisfies

J~det(1 — K(&t"/3, ¢t'/3) = det(1 — K( (&, 0)),

such that

lim K (&, Q) :J Ailk + E)Ai(k + ) dk.
t—o0 0

Non-Gaussian distribution function
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Nested poles

The crossing probability involves mixed integrals of the form

e\nt icien(zi — 22T (1 — p'z;
J2 X Ty ::lufj; dn H1§<J<“( : 1) [T=1 (1 = p72) X
[z — O™z (1+2z5))™
La[; d™ o efimt [Thckergm (Wt —wy)
Ho,+1 [Ty wit M (wy — 1)m

2

X

ﬁ 14+1/p *i_fl":[ 1+z
14+ wy/p’ 1k11+z]wk

The integral J,, now depends on {z;}. The Fredholm kernel is

K(x,y) = ) dulx)bi(y),

and

-~ 1+w/p’ - 1+z;w w Kk w2
¢>k(x)7£dw WX+1(W—1)J_1:[ w T—w) © ’
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Dominant contribution
Consider the contributions arising from the combined poles at z; = 1 and wy =1inJ, x Jy,

2 2n1m

3[) "z [Ticicjen (i —25)
|

T, (2 — 1)n jgdmw Mhgiecrem (v = 1+32
j=11%j — 1

Hk1Wk*1 Hk11+z]wk

o The mixed factors in ¢y expand near z = 1

1+z 2
Trow —wrg Ol v

o For the combined poles, we can set zj = 1in ¢ (x)

0 = the z and w integration factorises
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Final result

The z-integration produces a Gaussian and the w-integration a GUE distribution.

Theorem

In the appropriate scaling limit

lim Pum,p(t) = Faue(s+)Faauss(5-),
t—oo

1
,(n,m;t)::W(H+p)n7(37p)m+%(17p)(17 1—p) /4 )

1

:W(72(2fp)n+29m+(27p)(1 fp)pt),

+(n,m;t) =

Pra[ns(t) =N, n(t) = M]

35
40 + particle number N
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Conclusion

o (First) proof of Nonlinear Fluctuating Hydrodynamics for a two-component mixture
o Using integrability
o Mix of Gaussian and KPZ modes

o Dynamic poles in integrand
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o Neselsvedenbers [
Universality in Nagel-Schreckenberg model

Joint work with Andreas Schadschneider, Johannes Schmidt, Gunter Schiitz.

NaSch definition:

@ Acceleration:
vn — min (vp + 1, Vinax)

@ Deceleration: If v, > d, i.e.
v — min (v, dn)

@ Randomisation:
Vn pJmax(vTL —1,0) .

@ Vehicle movement:
Xn — Xn + Vn

At vmax = 1 this is equivalent to (discrete time) TASEP.

Does KPZ universality survive when vmax > 1?
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Structure function

S(x,t) = (u(x, t)u(0,0)) = t~2/3fpg (t*2/3(x - vt))

with the Prahofer-Spohn scaling function fpg.

-3
14 x10
Data at: Scaling fcts.:
121 o t=27500 — Vmax = 2 1
e t=10500 p=0.243
10 t = 4000 Vnx =3 ]
:'« s e t=1000 p=0.173
& 6
0
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2
0

-10 -5 0 5 10

(x — veqrt) - 723
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Integrated current

P(],t) ~ t /3Fgg (—] . t_1/3>
with the Baik-Rains scaling function Fgg(x ).

For vinax = 3:

— (00 PR3 (00 )

® t=44500 (a)
08} e t=27500 g
® t=10500
@° t = 4000
< 06F e t=1000 1
s
2 04 ,
«
0.2 ,
0 . . .
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