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Spin-1/2 XXX chain: integrable boundary conditions I

Periodic boundary

H =
N

∑
j=1

~σ j~σ j+1, (σ
x,y,z
N+1 = σ

x,y,z
1 )

• Yang-Baxter: infinite number of conserved charges Qn =
dn

dxn logT (x), H = Q1

• magnetization ∑ j σz
j commutes with H and Qn.

Off-diagonal boundary System with arbitrary boundary fields h1, hN can be written as

H =
N−1

∑
j=1

~σ j~σ j+1 +hz
1 ·σ

z
1 +hz

N ·σz
N +hx

N ·σx
N

parameters of later use: p := 1/hz
1, q := 1/hz

N and ξ := hx
N/hz

N .

Curious situation: we have Yang-Baxter, reflection matrix/equation

• infinite number of conserved charges for any p,q,ξ: Qn =
dn

dxn logT (x), H = Q1

• for ξ 6= 0 the magnetization ∑ j σz
j does not commute with H and Qn.
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Spin-1/2 XXX chain: integrable boundary conditions II

Integrability is proven by the Yang-Baxter equation and Sklyanin’s reflection algebra

Several methods of solution have been applied

• T Q relations in case of roots of unity, special boundary terms (Nepomechie 2002/04)

• Separation of variables (Frahm, Seel, Wirth 2008; Nicolli 2012; Faldella, Kitanine, Niccoli

2013)

• Fusion (Frahm, Grelik, Seel, Wirth 2008)

• Off-diagonal Bethe ansatz: Commuting transfer matrices + inversion identities (J. Cao, W.-L.

Yang, K. Shi, Y. Wang 2013, R.I. Nepomechie 2013)

• Modified Bethe ansatz (Belliard 2015; Belliard, Pimenta 2015; Crampé N; Avan, Belliard,

Grosjean, Pimenta 2015)
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Fusion analysis, T -system, Y -system... robust/universal

For arbitrary integrable boundary (historically first for periodic boundary)

Fused transfer matrices Tj with spin j/2 in auxiliary space, mutually commuting and with H

[Tj(u),Tl(v)] = 0,
d

du
lnT1(u)

∣
∣
∣
u=i

= H

(bilinear) functional relations for j = 1,2,3... AK, Pearce (1992)

Tj(v− i)Tj(v+ i) = ϕ(v− ( j+1)i)ϕ(v+( j+1)i)+Tj−1(v)Tj+1(v)
(

pbc: ϕ(v) = vN
)

so-called T -system according to A. Kuniba, T. Nakanishi, J. Suzuki (1994)

Define

Yj(v) :=
Tj−1(v)Tj+1(v)

ϕ(v− ( j+1)i)ϕ(v+( j+1)i)
, j = 1,2, ....

immediately we obtain for all j = 1,2,3, ...

Yj(v− i)Yj(v+ i) = [1+Yj−1(v)][1+Yj+1(v)],

so-called Y -system according to A. Kuniba, T. Nakanishi, J. Suzuki (1994)
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Non-linear integral equations... here for ground-state

Periodic boundary: For Y1(v) the functional equation reads (L ≡ N)

Y1(v− i)Y1(v+ i) = 1+Y2(v),

but due to zero of order L at 0 and poles of order L at ±2i

lnY1(v) = L log tanh
π

4
v+ s∗ ln(1+Y2)

where ∗ denotes convolution and s is the function s(v) :=
1

4coshπv/2
.

Rest of functional equations turn into (simpler) integral equations

lnYj(v) = s∗ [ln(1+Yj−1)+ ln(1+Yj+1)], j ≥ 2,

Eigenvalue of T1(v) from

T1(v− i)T1(v+ i) = ϕ(v−2i)ϕ(v+2i)[1+Y1(v)]

as

lnT1(v) = Lφ(v)+ s∗ ln(1+Y1) ⇒ EL = Le0 +
∫ ∞

−∞
s′(v+ i) ln(1+Y1(v))dv
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Fusion: TBA-like non-linear integral equations - Comparison

Periodic boundary

lnY1(v) = L log tanh
π

4
v+ s∗ ln(1+Y2)

lnY2(v) = 0 + s∗ [ln(1+Y1)+ ln(1+Y3)],

lnY3(v) = 0 + s∗ [ln(1+Y2)+ ln(1+Y4)],

...
Off-diagonal boundary

lnY1(v) = d1(v)+ s∗ ln(1+Y2)

lnY2(v) = d2(v)+ s∗ [ln(1+Y1)+ ln(1+Y3)],

lnY3(v) = d3(v)+ s∗ [ln(1+Y2)+ ln(1+Y4)],

...

with non-trivial driving terms in each line: not so useful.

Large deal of the work by Frahm et al. 2008 spent on coping with this situation:

• infinitely many non-linear integral equations (for non-hermitian field, i.e. imaginary ξ)

• truncation, numerics for relatively short chains
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Finite size data from T Q relation I

Periodic boundaries

Bethe ansatz or similar yields T Q relation

T1(v)q(v) = ϕ(v− i)q(v+2i)+ϕ(v+ i)q(v−2i)
(
ϕ(v) = vN ,N ≡ L

)

with polynomial q(v) with zeros satisfying the so-called Bethe ansatz equations.

Functional equations may be rewitten as NLIE for two auxiliary functions a, a

loga(v) = L log tanh
π

4
(v+ i)+κ∗ [log(1+a)− log(1+a)],

loga(v) = L log tanh
π

4
(v− i)+κ∗ [log(1+a)− log(1+a)]

with kernel κ(v) :=
1

2π

∫ ∞

−∞

e−|k|

ek + e−k
eikvdk.

Energy EL = Le0 +
∫ ∞

−∞
s′(v+ i) log[(1+a(v− i))(1+a(v+ i))]dv

AK, Batchelor 90; AK, Batchelor, Pearce 91; AK 92; Destri, de Vega 92, 95; J. Suzuki 98

Nota bene: a(v) = ϕ(v+ i)q(v−2i)/ϕ(v− i)q(v+2i), a(v) = 1/a(v)
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Finite size data from T Q relation II

Off-diagonal boundary

Course of events for calculating eigenvalues of the Hamiltonian

(i) set up the generating family of conserved charges: transfer matrix T (x)

(ii) derive functional equation for T (x) with suitable auxiliary function Q(x): TQ-relation

(iii) use the TQ-relation

If analyticity properties of Q(x) are controlled (see periodic bc), the T Q-relation allows to derive

Bethe ansatz equations etc.

Off-diagonal case: the function Q(x) has unpleasant properties. No non-linear integral equations

for two functions!

Alternatively, a modified TQ-relation can be derived with polynomial Q(x), but with ill-posed

Bethe ansatz equations.

Even the ground-state is described by intrinsically complex-valued rapidities, iterative procedure

for roots is unstable. However, ...
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(Alternative) Inhomogeneous T Q-relation I

J. Cao, W.-L. Yang, K. Shi, Y. Wang derived the following ansatz for a polynomial T (u) that

satisfies a couple of discrete functional equations:

T (u) =
2(u+1)2N+1

2u+1
(u+ p)[(1+ξ2)

1
2 u+q]

Q1(u−1)

Q2(u)

+
2u2N+1

2u+1
(u− p+1)[(1+ξ2)

1
2 (u+1)−q]

Q2(u+1)

Q1(u)

+2[(−1)N − (1+ξ2)
1
2 ]

[u(u+1)]2N+1

Q1(u)Q2(u)

where Q1 and Q2 are polynomials

Q1(u) =
N

∏
l=1

(u−µl) Q2(u) = (−1)N
N

∏
l=1

(u+µl +1)

with zeros µ j to be determined by analyticity conditions. There are N of them, they are complex

valued...
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(Alternative) Inhomogeneous T Q-relation II

Characteristic properties of ansatz: eigenvalue T (u) is analytic and satisfies at u = 0 the

inversion identities

T (u−1)T (u) =
(u2 −1)2N+1

u2 −1/4
(u2 − p2)

[

(1+ξ2)u2 −q2
]

+O

(

u2N+1
)

,

This property can be established on the lattice (standard initial condition, crossing).

Also:

• eigenvalue T (u) is polynomial of degree 2N +2 with highest coefficient 2

• T (−1) = T (0) = 2pq

• symmetry T (−u−1) = T (u)

To my mind this derivation is as exact/rigorous as Takahashi’s thermodynamics in 2000/2001.
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Functional equations: Definition of auxiliary functions

We shift the arguments of the functions

q1(x) := Q1

(
i

2
x−

1

2

)

q2(x) := Q2

(
i

2
x−

1

2

)

t(x) = T

(
i

2
x−

1

2

)

= Φ1(x)
q1(x+2i)

q2(x)
︸ ︷︷ ︸

λ1(x)

+Φ2(x)
1

q1(x)q2(x)
︸ ︷︷ ︸

λ2(x)

+Φ3(x)
q2(x−2i)

q1(x)
︸ ︷︷ ︸

λ3(x)

and find that the following auxiliary functions have useful properties:

a :=
λ2(x)+λ3(x)

λ1(x)
, 1+a=

λ1(x)+λ2(x)+λ3(x)

λ1(x)
,

a :=
λ1(x)+λ2(x)

λ3(x)
, 1+a=

λ1(x)+λ2(x)+λ3(x)

λ3(x)
,

c :=
λ2(x) [λ1(x)+λ2(x)+λ3(x)]

λ1(x)λ3(x)
, 1+ c=

[λ1(x)+λ2(x)] [λ2(x)+λ3(x)]

λ1(x)λ3(x)
,

tJ model like ansatz of suitable auxiliary functions (Jüttner, AK 97)

Factorization into “elementary factors” yields integral equations for logs.
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Non-linear integral equations I

3 non-linear integral equations take the compact form







loga

loga

logc







= d +K ∗







log(1+a)

log(1+a)

log(1+ c)






, K =







κ −κ k

−κ κ k∗

k∗ k 0






, k(x) :=−

i

x− i0+

where κ(x) was introduced before and

d :=







(2N +1) log th(x+ i)+ ...

(2N +1) log th(x− i)+ ...

log[x2(x2 − x2
0)]+ ...






,

and dots denote terms containing O(1) expressions of type

log
Γ(cst.− ix/4)

Γ(cst.+ ix/4)

with “cst.” like p,q etc.

Warning: not all convolution integrals well-defined, logarithmic divergencies! “kinks” in loga(x)
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Numerical solution to NLIE: ground-state I

Solution for p =−0.6,q =−0.3,ξ = 0.1 and N = 10

-40 -20 0 20 40

-6

-4

-2

0

2

4

6

Functions are rather boring, but show tendency to numerical instability in iterative treatment.
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Non-linear integral equations II

Proper formulation containing counter terms







loga

loga

logc







= d +K ∗









log(1+a)− log

(
x− xr+

x− xr−
·

x− xl+

x− xl−

)

log(1+a)− log

(
x− xr−

x− xr+
·

x− xl−

x− xl+

)

log(1+ c)









,

where xr+ and xr− are some complex numbers at “the right axis” with positive and negative

imaginary parts; xl+ and xl− on the “left”.

d :=











(2N +1) log th(x+ i)+ log

(
x− xr+−2i

x− xr−
·

x− xl+−2i

x− xl−

)

+ ...

(2N +1) log th(x− i)+ log

(
x− xr−+2i

x− xr+
·

x− xl−+2i

x− xl+

)

+ ...

log
x2(x2 − x2

0)

(x− xr−+ i)(x− xr+− i)(x− xl−+ i)(x− xl+− i)
+ ...











,

Now all convolution integrals well-defined. Curious: the xr±, xl± drop out, they may be arbitrary.
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Spin offs: non-trivial solutions to NLIE of periodic chain with L = 0

Take L = 0 in

loga(v) = L log tanh
π

4
(v+ i)+κ∗ [log(1+a)− log(1+a)],

loga(v) = L log tanh
π

4
(v− i)+κ∗ [log(1+a)− log(1+a)]

No driving term! Ansatz for solution: constants, integral equation turns into algebraic equation.

Result: a(v) = a(v)≡ 1. Simple!

Question: Is the solution unique?

No! There are solutions of the above counter-term type!

a(x) =
x− xc −2i

x− xc +2i
, a(x) =

x− xc +2i

x− xc −2i

with arbitrary constant xc.
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Back to the off-diagonal case

Observations:

• For small ξ the “kinks” in loga(x) are far from the origin.

• They disappear for ξ → 0 (parallel boundary fields) which also enforces c→ 0. Then only

two NLIE for two functions are left.

• The position of the kinks is difficult to understand “intuitively”. For large arguments all driving

terms take “flat values”. And somewhere the functions a and a encircle −1.

Question: Is this responsible for numerical instabilities?

Goal of numerical calculations:

understanding the L → ∞ behaviour of the kinks, of the parameter x0 for setting up the correct

scaling limit for analytical CFT calculations.
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Numerical solution to NLIE: ground-state II

Solution for p =−0.6,q =−0.3,ξ = 0.1 and N = 4,10,102,103, ...,109.

Shown are real and imaginary parts of log(1+a), log(1+a), log(1+ c)
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Functions are still boring. However, transitions move out to larger arguments for increasing L.

Also, log(1+ c) gets more pronounced.
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CFT from scaling limit

Periodic boundaries

loga(v) = L log tanh
π

4
(v+ i)+κ∗ [log(1+a)− log(1+a)],

loga(v) = L log tanh
π

4
(v− i)+κ∗ [log(1+a)− log(1+a)]

Consider functions in the scaling limit

a(x) := lim
L→∞

a

(

x− i+
2

π
logL

)

, ā(x) := lim
L→∞

a

(

x+ i+
2

π
logL

)

They satisfy: loga(x) =−2e−
π
2

x +κ∗ log(1+a)−κ− ∗ log(1+ ā),

log ā(x) =−2e−
π
2

x −κ+ ∗ log(1+a)+κ∗ log(1+ ā)

The purely exponential form of the driving term and the symmetry of the kernel allow for an

analytical calculation of the integral in

EL = Le0 −
π

4L

∫ ∞

−∞
e−

π
2

x log[(1+a(x))(1+ ā(x))]dv

How about the ODBA case? There the driving terms have exponential and algebraic behaviour!
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Summary

Results:

• presentation of three (!) non-linear integral equations for the Heisenberg chain with broken

conservation of magnetization

• potentially much more powerful than usual numerics (direct Bethe ansatz, Lanczos)

• direct iterative treatment of NLIE suffers from instabilities

To do:

• numerics: modified update rules

• alternative integral equations by fusion + closure

• symmetry of integration kernel for N → ∞ may allow for “dilog-trick”
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