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Outline

e Spin-1/2 Heisenberg chain with non-diagonal boundary fields

boundary field case <+ periodic boundary case

e Nno conservation of magnetization, but infinitely many conserved charges
integrability, various eigenvalue equations
— fusion, T-system, Y -system

— T Q relations

e derivation of finite set of non-linear integral equations

3 versus 2 equations

e numerics: ground-state with “kinks”

Work in collaboration with H. Frahm, D. Wagner

within DFG-Forschergruppe 2316 “Correlations in Integrable Quantum Many-Body Systems”

and with X. Zhang (AvH fellow)
. Exactsolution of the spin-1/2 XXX chain with off-diagonal boundary fields ~ p.2/20




Periodic boundary
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e Yang-Baxter: infinite number of conserved charges O, = % logT (x), H= Q)

e magnetization ) ; G§. commutes with H and Q,,.

Off-diagonal boundary System with arbitrary boundary fields h;, hy can be written as
Z G;jGjt1+hi -0 +hy -0y +/hy Oy

parameters of later use: p :=1/hj, g :=1/hy, and & := Iy, / Iy,
Curious situation: we have Yang-Baxter, reflection matrix/equation
e infinite number of conserved charges for any p,q,&: O, = % logT (x), H= Q)

o for & # 0 the magnetization . ; 6; does not commute with H and Q.
—




Spin-1/2 XXX chain: integrable boundary conditions 11

Integrability is proven by the Yang-Baxter equation and Sklyanin’s reflection algebra

Several methods of solution have been applied
e T Q relations in case of roots of unity, special boundary terms (Nepomechie 2002/04)

e Separation of variables (Frahm, Seel, Wirth 2008; Nicolli 2012; Faldella, Kitanine, Niccoli
2013)

e Fusion (Frahm, Grelik, Seel, Wirth 2008)

e Off-diagonal Bethe ansatz: Commuting transfer matrices + inversion identities (J. Cao, W.-L.
Yang, K. Shi, Y. Wang 2013, R.l. Nepomechie 2013)

e Modified Bethe ansatz (Belliard 2015; Belliard, Pimenta 2015; Crampé N; Avan, Belliard,
Grosjean, Pimenta 2015)

Hamiltonian — p.4/20




For arbitrary integrable boundary (historically first for periodic boundary)
Fused transfer matrices 7 with spin j/2 in auxiliary space, mutually commuting and with H

T, )] =0, L InTi(u)

= H
du

u=i

(bilinear) functional relations for j = 1,2, 3... AK, Pearce (1992)

T = )Ty +1) = @(v = (j+ D)@+ (+ i) + Tj 1 ()T () (pbe: g(v) =)
so-called T'-system according to A. Kuniba, T. Nakanishi, J. Suzuki (1994)
Define

T. | (DT
Yi(v) = -1 0)Tj1(v) i=1.2,...

o(v—(j+Di)e(v+(j+1))’

immediately we obtain forall j =1,2,3,...

Yi(v=1)Y;j(v+i) = [1+Y;1(v)][1+Yj1(v)],
so-called Y-system according to A. Kuniba, T. Nakanishi, J. Suzuki (1994)
o Hamiltonian —p.5/20




Periodic boundary: For Y; (v) the functional equation reads (L=N)
i(v—1)Y1(v+i) =141 (v),
but due to zero of order L at 0 and poles of order L at +2i
InY;(v) = Llog tanhgv +sxIn(1+Y)>)

1
~ 4coshmy/2°

Rest of functional equations turn into (simpler) integral equations

where * denotes convolution and s is the function s(v) :

InY;(v) =sx*[In(14+Y,_1)+In(14+Y;41)], j=>2,
Eigenvalue of T (v) from

Ti(v—1)T1(v+i)=0(v—21)p(v+2i)[1 + Y (v)]
as

InTy(v) =Lo(v) +s*In(1+Y) = Er :Leo—|—/oo S(v+i)In(14+Y;(v))dv
L Hamiltonian —p6/20




Periodic boundary

T
InY; (v) = Llog tanhZV—|—s xIn(1+Y>)

InYs(v) =0 +sx[In(1+Y;) +1In(1 +13)],
In¥3(v) =0 +sx[In(1+Y2) +In(1 +Ys)],

Off-diagonal boundary
InY;(v)

InY;(v)
In¥3(v)

di(v)+s*In(1+Y,)
dy(v)+sx*[In(14+Y;)+1n(1+Y3)],
dz(v) +sx*[In(1+Y2) +1In(1+Yy)],

with non-trivial driving terms in each line: not so useful.
Large deal of the work by Frahm et al. 2008 spent on coping with this situation:

e infinitely many non-linear integral equations (for non-hermitian field, i.e. imaginary &)

e truncation, numerics for relatively short chains
o Hamiltonian—p.7/20




Periodic boundaries
Bethe ansatz or similar yields T Q relation

T (v)q(v) = v —)g(v+2) + (v +i)g(v—21)  (p(v) =", N=L)

with polynomial ¢(v) with zeros satisfying the so-called Bethe ansatz equations.

Functional equations may be rewitten as NLIE for two auxiliary functions a, a
T : _
loga(v) = Llog tanhZ (v+1i) +xx*[log(l 4+ a) —log(1+a)],

T
loga(v) = Llog tanh— (v —1) + K * [log(1 +a) —log(1+ a)]

4
1 e e Ikl
with kernel x(v) := o / ) eke+ g eXVdk.
Energy Er = Leg —I—/ s'(v+i)log[(1+a(v—1))(1+a(v+i))]dv

AK, Batchelor 90; AK, Batchelor, Pearce 91; AK 92; Destri, de Vega 92, 95; J. Suzuki 98
Nota bene: a(v) = @(v+i)g(v—2i) /(v —i)g(v+2i), a(v) = 1/a(v)
e Hamiltonian - p.8/20




Finite size data from 7 Q relation I1

Off-diagonal boundary
Course of events for calculating eigenvalues of the Hamiltonian

(i) setup the generating family of conserved charges: transfer matrix 7' (x)
(i) derive functional equation for T (x) with suitable auxiliary function Q(x): T Q-relation
(iii) use the T Q-relation

If analyticity properties of Q(x) are controlled (see periodic bc), the T Q-relation allows to derive
Bethe ansatz equations etc.

Off-diagonal case: the function Q(x) has unpleasant properties. No non-linear integral equations
for two functions!

Alternatively, a modified 7'Q-relation can be derived with polynomial Q(x), but with ill-posed
Bethe ansatz equations.

Even the ground-state is described by intrinsically complex-valued rapidities, iterative procedure
for roots is unstable. However, ...

Hamiltonian — p.9/20




J. Cao, W.-L. Yang, K. Shi, Y. Wang derived the following ansatz for a polynomial 7' (u) that
satisfies a couple of discrete functional equations:

4+ 1)2N+ 1 y—
) =2 148 g 2
2u*N+H1 Q>(u+1)

D0+ ) - B
[t(u+ 1))V

— N— 2%
+2[(=1)" = (1+¢7)2] Q1 (u)Q2(u)

where Q1 and Q, are polynomials

N

N
Q1 (u) = J(u—u) O (u) = (—DN[J(uw+m+1)

=1 =1

with zeros u; to be determined by analyticity conditions. There are N of them, they are complex

valued...




Characteristic properties of ansatz: eigenvalue T (u) is analytic and satisfies at u = 0 the

inversion identities

(uz . 1)2N—|—1
ur—1/4

T(u—1)T(u) = (u® — p?) [(1—|—§2)u2—q2] —|—O(u2N+1),

This property can be established on the lattice (standard initial condition, crossing).

Also:
e eigenvalue T (u) is polynomial of degree 2N + 2 with highest coefficient 2
e T(—1)=T(0) =2pgq

o symmetry T(—u—1) =T (u)

To my mind this derivation is as exact/rigorous as Takahashi’s thermodynamics in 2000/2001.




We shift the arguments of the functions

q1(x) == 01 <% X — %) q2(x) := Q2 (% x— %)

Y N D N L) . 2 —2i)
=7 (31-3) = o e e @am TP T am
() () ()
and find that the following auxiliary functions have useful properties:

_ Ma(x) +A3(x) ~ M (x) + A (x) +A3(x)

Q= 2 M(x)3 ’ l+a= ) :

__ M) +hx) _ M)+ Aa(x) +A3(x)

a::= }\,3()6) , l+a= }\,3(.76) )

oo M2 (0) [ () + A2 (x) + A3 ()] 4o MO+ Az (x) +As(x)]
' A (x)A3(x) ’ A (x)A3(x) ’

tJ model like ansatz of suitable auxiliary functions (Juttner, AK 97)
Factorization into “elementary factors” yields integral equations for logs.




3 non-linear integral equations take the compact form

loga log(1+a) K —-X &k .
i
a = a K = — * k = —
loga | =d+Kx | log(l+a) |, K kK k|, (x) s
logc log(1+¢) Kk 0

where k(x) was introduced before and

(2N + 1)logth(x+1) ...
d:= | (2N+1)logth(x—i)+... |,
log[x? (x> —x3)] + ...

and dots denote terms containing O(1) expressions of type

["(cst. —ix/4)
["(cst. +1ix/4)

log

with “cst.” like p, g etc.
Warning: not all convolution integrals well-defined, logarithmic divergencies! “kinks” in loga(x)




Solution for p = —0.6,g = —0.3,§ =0.1 and N = 10

|
Im log(1 + a)

Re log(1 + a)

0_ /0
- T log(1 + ¢) Re log(1 + ¢)

Functions are rather boring, but show tendency to numerical instability in iterative treatment.




Proper formulation containing counter terms

X—Xr4 X—X[4 \
X—Xr— X—X]_
X—Xr— X—X]_

loga [ =d+Kx* | 1og(1+a) —log : )
X—Xrp X—X[4
logc \

log(1+¢) )

where x,4+ and x,_ are some complex numbers at “the right axis” with positive and negative

loga /log(l—l—a)—log

imaginary parts; x;5. and x;_ on the “left”.

ey o
/(2N+1)logth(x+i)+log AT S A o R +\

X —Xp— X — X
—X—+21 x—x;_+2i
d:= | (2N +1)logth(x —i) +log il b M el M +... ],
X — Xpt X=Xy
(% —x3)

\ log (x—xr— 1) (x—xpp —1) (x—x/— +1) (x —x75 — 1) +... )

Now all convolution integrals well-defined. Curious: the x,+, x; drop out, they may be arbitrary.




Take L=101n

loga(v) = Llog tanhg (v+1) +xx[log(1 4+ a) —log(1 +a)],

loga(v) = Llog tanhg (v—1i)+xx[log(l+a)—log(l+a)]
No driving term! Ansatz for solution: constants, integral equation turns into algebraic equation.
Result: a(v) =a(v) = 1. Simple!

Question: Is the solution unique?
No! There are solutions of the above counter-term type!

X—X,—21
xX—x.+2i

x—xc+2i
x—x.—2i

a(x) a(x)

with arbitrary constant x,.




Observations:
e For small ¢ the “kinks” in loga(x) are far from the origin.

e They disappear for & — 0 (parallel boundary fields) which also enforces ¢ — 0. Then only
two NLIE for two functions are left.

e The position of the kinks is difficult to understand “intuitively”. For large arguments all driving
terms take “flat values”. And somewhere the functions a and a encircle —1.

Question: Is this responsible for numerical instabilities?

Goal of numerical calculations:
understanding the L — oo behaviour of the kinks, of the parameter x( for setting up the correct

scaling limit for analytical CFT calculations.




Solution for p = —0.6,g = —0.3,€ = 0.1 and N = 4,10,10%,10°, ..., 10°.
Shown are real and imaginary parts of log(1+ a),log(1+a),log(1+¢)

T | T | T | T
6 —~ =

777770 NS

\\7,.:@_ wss
0",
\'/"

0 ,

Functions are still boring. However, transitions move out to larger arguments for increasing L.
Also, log(1 + ¢) gets more pronounced.




Periodic boundaries

T

loga(v) = Llog tanhz (v+1i)+x*[log(l 4+ a) —log(1+a)],
T

loga(v) = Llog tanhZ (v—1)+Kxx[log(l+a)—log(1+a)]

Consider functions in the scaling limit

L—oo

2 2
a(x) := lim a (x—i—|— —logL) , ax):=lima (x—|—i—|— —logL)

They satisfy: loga(x) = —2e 2" + kxlog(1 4 a) — k_ xlog(1 4 a),
loga(x) = —2e~ 2% —1c; *log(1+a) + Kk xlog(1 +a)

The purely exponential form of the driving term and the symmetry of the kernel allow for an
analytical calculation of the integral in

EL=Leo— o [ e Hlogl(1+a(x)(1+a(x)dy

How about the ODBA case? There the driving terms have exponential and algebraic behaviour!
L Hamiltonian—p.19/20




Resulis:

e presentation of three (!) non-linear integral equations for the Heisenberg chain with broken
conservation of magnetization

e potentially much more powerful than usual numerics (direct Bethe ansatz, Lanczos)
e direct iterative treatment of NLIE suffers from instabilities

To do:
e numerics: modified update rules

e alternative integral equations by fusion + closure

e symmetry of integration kernel for N — o may allow for “dilog-trick”
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