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» The Ruisjenaars chain
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Relation with Spin Chains

> From a Heisenberg chain point of view:

=57 W2

> make contraction, let spin and r to infinity

et =ef
r

Sz%i—li—
do _idg "

» Obtain Toda Lax Matrix:

w-(25 %)
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» Monodromy matrix:



Hamiltonian

» Monodromy matrix:

» Open chain Hamiltonian:

A=uV 4+ PN 4 HN2

1

2 N-1
i qk—
Z > zl: ek~ Gk+1
» Obey

RTT =TTR
relation.
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classical solution of the open chain by separation of
variables

> equation of motion: Ly = MLy — LMy

u eqk
M = <_eqk+1 O >

Aw) = [T(u — o)

k

U, are commuting conserved quantities.
=0

» uy are assymptotic momentas. At t = £o00 px = Ug,.
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> set
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> set

puk(t) = pui(0)e*

» From which you can conclude (Moser) particles behave as
rods of length ¢;; = 2log(u; — uj).

G—a—pt=Y dk—Y bk

k>j k<j

>
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classical solution of the closed chain by separation of
variables

» A= A(u) + D(u) conserved.
> set

B(u) = e™B(u) = [ J(v - w)
k
> set
A(uk) = ik

> trajectories are on a hyperelliptic curve (trace A):

fik + 1/ pue = Nuk)



Hamilton Jacobi

» Set of n — 1 inedependant Hamilton Jacobi equations:

2cosh(S'(uk)) = N uk)

5 = ZSk(uk)
k



> Bluk) = —puk + 1/

> dUk [ dt
VN4 = B'(up)



> Bluk) = —puk + 1/

> dUk [ dt
VN4 = B'(up)

» multiplying by u,’( and summing over k:

Z/uk UJdU _ 6 "
- /7/\2 —2 n—1,

Kac Mac Laughlin.
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Baxter Strategy:

» triangularize L conjugate L by M;, so that A unchanged.
1 y;
w=("7)
Lj — ZJ' = I\/’J'LijJr]_

» [, =0:
X .
pj:—u—l—fj—i-M
i X



Canonical transform
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Canonical transform

» canonical transform S(y;) = S(x;) — W(x;, y;)
ow_ ., W_,

» you can show:

oW oW
Axi. —220) = (v 222
(x, axj) v ay,-)

Preserves conserved quantites Backlund transform



Quantum Q
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Quantum Q

> Q, = eWulyX) Kernel
A, Q=0
> compute the trace:
AQy = Qu—i + Qu+i

quantum analogue of hyperelliptic curve

P in the open case there is a limit that adds a variable:

Qnn-1-Q2Q21 =v(x1, -, Xn)

Whittacker functions.



Gutwiller, Gaudin-P

» Bessel recursion relation:

le'UQu = p1/2(*Qufi + Qu+i)

» Bessel solution entire:

liu(p*/?) = sinh(7u) Q.

Lia(p*/?) = sinh(ru) @,
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» linear combination (poles at u = k cancel)

Qu = QTu + Ql,u

> |Qu| ~ e ™Iul/2 at infinity.

» Q(u) = K_jy(p'/?) = Macdonald Function.



General case
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General case

> iu— A(u) = TTh_,(—20)(u — vi)
> |Qu| ~ e TIU/2 at infinity.

> TQ equation:
Nw)Qu = p2((—)" Qu—i + Qu+7)

Operator equation — Eigenvalue equation,



General case

» Solve recursion relation:

Q1w ) = (012/2) |

Q (U UJ 1/2/2 —iu




General case

» Solve recursion relation:

Qi(u uy) = (52 /2)"

Q (u UJ) 1/2/2 —iu

» right hand side depends on v; roots of A.

pp(u—1i)

pr(u) = pp(u+i)+ (= )Pm

(o) = gl i)+ (e )

» have continuous fraction representation.

(—=)"p'/?

=1
it * An\n—1rn

Au)A(u + 1)
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quantum wronskien

P> suppose we have a Inear recursion:

than = ant+1 + an—1

» then for two linearly independant solutions a,, b,, one has
Wp = anbpi1 — bpanyt

is constant.
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» The quantum wronskien
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determinant).
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» The quantum wronskien

: pr(u — i)y (u)
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quantum wronskien

» The quantum wronskien

: pr(u — i)y (u)
w, = — i) = (=)Np—
H(u) MT(U):UKL(U I) ( ) p /\(U)A(U _ I)
can be represented as an infinite determinant (so called Hill
determinant).
>

H sinh (u — ug)

sinhm(u — vy)
J

» Numerator=Bethe roots, Denominator=transfer matrix roots.
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» |ook for linear combination:

Q(u) = Qp(u) — £Qy(v)

P Bethe équations results from cancellation of poles:

Gty =
Qi(Uk) _f



» Koszlowski-Teschner (after Nekrasov Shatashvili) How to get
rid of v,? We see that in the Hill determinant, the zeros
nearly coincide with the poles, so, we try to modify the
method so as to make them coincide exactly?
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Koszlowski-Teschner (after Nekrasov Shatashvili) How to get
rid of v,? We see that in the Hill determinant, the zeros
nearly coincide with the poles, so, we try to modify the
method so as to make them coincide exactly?

modify A — Ag assume Bethe roots coincide with zeros of
No:v:

No(1)Qu = p*?((=)V Qu_i + Quyi)

with: Ag(u) = [, (u — uk)
Solve recursion relation:

Qurw) = (0*2/2)* [ (=)

QJ/(U UJ) 1/2/2 Iqu—



» zero order Bethe équations from cancellation of poles:

e G
— 2iuy i ,\V/k
! SrvEy

Jj



» zero order Bethe équations from cancellation of poles:

w17 T 7
=" ] =t
7))

r
2ming = — log & + 2iuy log(p) + Z log( I-(ui—uk)
J 1

coincide exactly with Sutherland. Although the approach is
entierly different.




» This cannot be exact, then improve Q:

Q) = Qu)ry(u) , Quu) = Q) (u)ry(u),



» This cannot be exact, then improve Q:

Q) = Qu)ry(u) , Quu) = Q) (u)ry(u),

» get equation for v: Same right hand size as Gutzwiller with
A — /\o

Au u)=uv(u+i )N —VT(u_i)
fori) = (ot i)+ ()i
A vi(u+i)

S G R G A won v ereary

» can be solved as a series in p for both A and v.
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Koszlowski-Teschner

» apply wronskian to obtain a nonlinear equation for vy, v

P wronskien identity with wronskien equal to one:

vr(u)ry(u—i) =1+ (—)Np/’m

» by construction v4, v have their poles at uyx + im and u) — im
with m > 1, we can solve for:

K+ (log(vy (), (u — 1)) = log(vp(u — ), (u)

» set Y = vy(u— i)vy(u), then above equality becomes:

(=)"pY(u)

log(Y(u)) = K * log(1 + No()o(u — 1)

)



» K is the Szego kernel:

1 1
2 1 + u?

K(u) =

» So we get modified Bethe equations:

Uk*UJ
2ming = — log & + 2iug log(p) + Z |Og u; 7uk)
dv 1 1 (—)VpY(v)

g(uk —v+i * Uy — v) log(1 + No(v)No(v — /))



The g-Toda chain.

» pause The g-Toda chain is the XXZ version of Toda.

» The expression of the Lax matrix is:
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The g-Toda chain.

» pause The g-Toda chain is the XXZ version of Toda.

» The expression of the Lax matrix is:

Li(z) = i 1—-2zX1 exp
1 - VzXq 62X1X1_1 .

> x; = g2imar/w2 X acts by translating qx: qx — qx + iw1,
g = e2™1/w2  dual quantities exchange wy, wo

» Commuting Weyl pairs:
Xix1 = gxa X1

Xi%1 = §x X



Ruisjenaars Hamiltonian

Xe(1 + 2741
Xk

M=

H =

T
.



Ruisjenaars Hamiltonian
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Ruisjenaars Hamiltonian

> TQ equation:

ANw)Qu = p*((—)" Qu-i + Qu+)

H 2/S|nh _ uk)
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Requests to find a solution

> Q entire

» Modular invarient AQ satisfyed with w1, wy exchanged.

MNu)Qu = p?((—)V Qu—i + Quyi)

» Behavior at infinity:

Q)| ~ e ™Mo
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Modularity

» Now, Hill determinant becomes elliptic function
H (o= )
O(m(u— vk))

» Connection between two “modular transform” hyperelliptic
curves?, apparently meaningless for wy,w» real? (7
imaginary).

» due to modularity, for wy/wy = p/r a fraction, some highly
nontrivial algebraic relations relate A and A spectra due to

rw; = pws.
H

J

Q:z

(v — uk))
U—Vk))

Cbz



Solution of TQ

» The Sutherland approximation for Q° must be Modular. Use
invarient [ Function:

Fq(u -+ iwl)

Fo(a) = —2isinh,,(u)
7I-q(u + iwa) = —2isin u
)l

» then improve @y by assuming factorization:

Q) = Qu)ri(w)Pr(u) , Q) = QP (w)ry (1) (u),



Kashaev Sergeev

Table: wy/wp, =i,m=0

n root H |H — Hks]|

0 .3535533905 4.594358800 i 210718
-1 612117375 -13.878304778+6.1612962432443 i 510715
-2 .79079992 -31.32504489969-12.153338942 i 310714
-3 935447530 -33.71547676874-54.1710567 i 31077

| compare the first four energies H obtained for wy/wy = i,n =0,
at fifth order with those of Kashaeev and Sergeev (table 3 and 4 of
their paper). For the three first values n = 0, —1, -2, —3 of the
Bethe equations



Sciarappa

Table: wy/wp, =272 =0

n root H

0 .462871608964 2.460524271907
-1 .680791907983  3.598470877254
-2 .844632649750 4.4628893132238

| compare the energies H obtained for wy/wy = 2712 p=0, at
third order in p, with those of table 5 of Sciarappa (Sc) . The three
first values n =0, —1, —2 are in agreement to his precision 10710,



Sciarappa

Table: wy =272 wy = 1,1 = log(3)/87

n root H

0 .4354731597837 2.752848101914
-1 .6178613438775 3.883834678235
-2 .7553058969907 4.746028853867




The simplest problem

» Two particles, wy/wp = 1.



The simplest problem

» Two particles, wy/wp = 1.

» Entire solution of Ly on the reals of:
d(x+ 1)+ ¢(x — 1) 4+ 2cos(2mx)p(x) = Ep(x)

Ground state was obtained independently by Marino and
Kashaev-Sergeev.

» quantum =classical motion on curve:

2cos(2my) 4+ 2 cos(2nx) = E



Conclusions

» Wave functions?

» g a root of unity?



