Q matrix and Bäklund for quantizing integrable models

Vincent Pasquier

lpht

30 aout 2019

O. Babelon, K. Koszlowski, V.P.

Plan

- ► Some classical results
- Quantization of the Toda chain
- ► The Ruisjenaars chain

Relation with Spin Chains

From a Heisenberg chain point of view:

$$L(u) = \begin{pmatrix} u + S^z & S^-/r \\ S^+/r & (u - S^z)/r^2 \end{pmatrix}$$

Relation with Spin Chains

From a Heisenberg chain point of view:

$$L(u) = \begin{pmatrix} u + S^z & S^-/r \\ S^+/r & (u - S^z)/r^2 \end{pmatrix}$$

make contraction, let spin and r to infinity

$$\frac{S^-}{r} \to e^{-i\phi} = e^q$$

$$S^z o rac{d}{d\phi} = rac{1}{i} rac{d}{dq} = p$$

Relation with Spin Chains

From a Heisenberg chain point of view:

$$L(u) = \begin{pmatrix} u + S^z & S^-/r \\ S^+/r & (u - S^z)/r^2 \end{pmatrix}$$

make contraction, let spin and r to infinity

$$\frac{S^-}{r} \to e^{-i\phi} = e^q$$

$$S^z o rac{d}{d\phi} = rac{1}{i} rac{d}{dq} = p$$

Obtain Toda Lax Matrix:

$$L(u) = \begin{pmatrix} u + p & e^q \\ -e^{-q} & 0 \end{pmatrix}$$

Hamiltonian

► Monodromy matrix:

$$T(u) = L_1(u) \cdots L_n(u) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Hamiltonian

Monodromy matrix:

$$T(u) = L_1(u) \cdots L_n(u) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Open chain Hamiltonian:

$$A = u^{N} + Pu^{N-1} + Hu^{N-2} + \cdots$$

$$H = \sum_{1}^{N} \frac{p_k^2}{2} + \sum_{1}^{N-1} e^{q_k - q_{k+1}}$$

Obey

$$RTT = TTR$$

relation.

• equation of motion: $\dot{L}_k = M_k L_k - L_k M_{k+1}$

$$M = \begin{pmatrix} u & e^{q_k} \\ -e^{-q_{k+1}} & 0 \end{pmatrix}$$

• equation of motion: $\dot{L}_k = M_k L_k - L_k M_{k+1}$

$$M = \begin{pmatrix} u & e^{q_k} \\ -e^{-q_{k+1}} & 0 \end{pmatrix}$$

$$\dot{A} = 0$$

• equation of motion: $\dot{L}_k = M_k L_k - L_k M_{k+1}$

$$M = \begin{pmatrix} u & e^{q_k} \\ -e^{-q_{k+1}} & 0 \end{pmatrix}$$

$$\dot{A} = 0$$

$$A(u) = \prod_{k} (u - u_k)$$

• equation of motion: $\dot{L}_k = M_k L_k - L_k M_{k+1}$

$$M = \begin{pmatrix} u & e^{q_k} \\ -e^{-q_{k+1}} & 0 \end{pmatrix}$$

 $\dot{A} = 0$

$$A(u) = \prod_{k} (u - u_k)$$

 u_k are commuting conserved quantities.

$$\dot{u}_k = 0$$

• equation of motion: $\dot{L}_k = M_k L_k - L_k M_{k+1}$

$$M = \begin{pmatrix} u & e^{q_k} \\ -e^{-q_{k+1}} & 0 \end{pmatrix}$$

 $\dot{A} = 0$

$$A(u) = \prod_{k} (u - u_k)$$

 u_k are commuting conserved quantities.

$$\dot{u}_k = 0$$

• u_k are assymptotic momentas. At $t = \pm \infty$ $p_k = u_{\sigma_k}$.

$$\dot{B}(u) = uB - e^{q_N}A$$

$$\dot{B}(u) = uB - e^{q_N}A$$

$$\mu_k = B(u_k)$$

$$\dot{B}(u) = uB - e^{q_N}A$$

$$\mu_k = B(u_k)$$

$$\mu_k(t) = \mu_k(0)e^{u_kt}$$

$$\dot{B}(u) = uB - e^{q_N}A$$

$$\mu_k = B(u_k)$$

$$\mu_k(t) = \mu_k(0)e^{u_kt}$$

From which you can conclude (Moser) particles behave as rods of length $\phi_{ij} = 2 \log(u_i - u_j)$.

$$\dot{B}(u) = uB - e^{q_N}A$$

$$\mu_k = B(u_k)$$

$$\mu_k(t) = \mu_k(0)e^{u_kt}$$

From which you can conclude (Moser) particles behave as rods of length $\phi_{ij} = 2 \log(u_i - u_j)$.

$$\tilde{q}_j - q_j - p_j t = \sum_{k>j} \phi_{jk} - \sum_{k< j} \phi_{kj}$$

- $ightharpoonup \Lambda = A(u) + D(u)$ conserved.
- ▶ set

$$\tilde{B}(u) = e^{q_N} B(u) = \prod_k (u - u_k)$$

- \land $\Lambda = A(u) + D(u)$ conserved.
- set

$$\tilde{B}(u) = e^{q_N}B(u) = \prod_k (u - u_k)$$

set

$$A(u_k) = \mu_k$$

- \land $\Lambda = A(u) + D(u)$ conserved.
- ▶ set

$$\tilde{B}(u) = e^{q_N}B(u) = \prod_k (u - u_k)$$

▶ set

$$A(u_k) = \mu_k$$

► trajectories are on a hyperelliptic curve (trace Λ):

$$\mu_k + 1/\mu_k = \Lambda(u_k)$$

Hamilton Jacobi

▶ Set of n-1 inedependant Hamilton Jacobi equations:

$$2\cosh(S'(u_k)) = \Lambda(u_k)$$

$$S = \sum_{k} S_k(u_k)$$

$$\triangleright \dot{\tilde{B}}(u_k) = -\mu_k + 1/\mu_k$$

$$\triangleright \ \dot{\tilde{B}}(u_k) = -\mu_k + 1/\mu_k$$

$$\qquad \frac{du_k}{\sqrt{\Lambda^2 - 4}} = \frac{dt}{\tilde{B}'(u_k)}$$

• multiplying by u_k^j and summing over k:

$$\sum_{k} \int_{-u^{k}} \frac{u^{j} du}{\sqrt{\Lambda^{2} - 4}} = \delta_{n-1,j} t$$

Kac Mac Laughlin.

Baxter Strategy:

▶ triangularize L conjugate L by M_j , so that Λ unchanged.

$$M_j = \left(\begin{array}{cc} 1 & y_j \\ \cdot & 1 \end{array} \right)$$

$$L_j \to \tilde{L}_j = M_j L_j M_{j+1}$$

Baxter Strategy:

▶ triangularize L conjugate L by M_j , so that Λ unchanged.

$$M_j = \left(\begin{array}{cc} 1 & y_j \\ \cdot & 1 \end{array} \right)$$

$$L_j \to \tilde{L}_j = M_j L_j M_{j+1}$$

 $L_{12} = 0$:

$$p_j = -u + \frac{x_j}{y_j} + \frac{y_{j+1}}{x_j}$$

Canonical transform

▶ canonical transform $S(y_j) = S(x_j) - W(x_j, y_j)$

Canonical transform

► canonical transform $S(y_j) = S(x_j) - W(x_j, y_j)$ $\frac{\partial W}{\partial x_j} = -p_j, \quad \frac{\partial W}{\partial y_i} = p'_j$

Canonical transform

▶ canonical transform $S(y_j) = S(x_j) - W(x_j, y_j)$

$$\frac{\partial W}{\partial x_j} = -p_j, \quad \frac{\partial W}{\partial y_j} = p_j'$$

you can show:

$$\Lambda(x_j, -\frac{\partial W}{\partial x_j}) = (y_j, \frac{\partial W}{\partial y_j})$$

Preserves conserved quantites Bäcklund transform

Quantum Q

 $ightharpoonup Q_u = e^{W_u(y,x)}$ Kernel

$$[\Lambda,Q]=0$$

compute the trace:

$$\Lambda Q_u = Q_{u-i} + Q_{u+i}$$

quantum analogue of hyperelliptic curve

Quantum Q

 $ightharpoonup Q_u = e^{W_u(y,x)}$ Kernel

$$[\Lambda, Q] = 0$$

compute the trace:

$$\Lambda Q_u = Q_{u-i} + Q_{u+i}$$

quantum analogue of hyperelliptic curve

▶ in the open case there is a limit that adds a variable:

$$Q_{n,n-1}\cdots Q_{3,2}Q_{2,1}=\psi(x_1,\cdots,x_n)$$

Whittacker functions.

Gutwiller, Gaudin-P

▶ Bessel recursion relation:

$$-2iuQ_{u} = \rho^{1/2}(-Q_{u-i} + Q_{u+i})$$

Bessel solution entire:

$$I_{iu}(\rho^{1/2}) = \sinh(\pi u) Q_{\downarrow u}$$

$$I_{-iu}(\rho^{1/2}) = \sinh(\pi u) Q_{\uparrow u}$$

linear combination (poles at u = k cancel)

$$Q_u = Q_{\uparrow u} + Q_{\downarrow u}$$

linear combination (poles at u = k cancel)

$$Q_u = Q_{\uparrow u} + Q_{\downarrow u}$$

 $ightharpoonup |Q_u| \sim e^{-\pi |u|/2}$ at infinity.

linear combination (poles at u = k cancel)

$$Q_u = Q_{\uparrow u} + Q_{\downarrow u}$$

- $ightharpoonup |Q_u| \sim e^{-\pi |u|/2}$ at infinity.
- $ightharpoonup Q(u) = K_{-iu}(\rho^{1/2}) = Macdonald Function.$

General case

$$iu \to \Lambda(u) = \prod_{k=1}^{N} (-2i)(u - v_k)$$

 $ightharpoonup |Q_u| \sim e^{-\pi |u|/2}$ at infinity.

General case

$$iu \to \Lambda(u) = \prod_{k=1}^{N} (-2i)(u - v_k)$$

- $ightharpoonup |Q_u| \sim e^{-\pi |u|/2}$ at infinity.
- ► *TQ* equation:

$$\Lambda(u)Q_{u} = \rho^{1/2}((-)^{N}Q_{u-i} + Q_{u+i})$$

Operator equation \rightarrow Eigenvalue equation,

General case

Solve recursion relation:

$$Q_{\uparrow}(u;u_j) = (\rho^{1/2}/2)^{iu} \prod_j \Gamma(\frac{u-v_j}{i})$$

$$Q_{\downarrow}(u;u_j) = (\rho^{1/2}/2)^{-iu} \prod_j \Gamma(\frac{v_j - u}{i})$$

General case

Solve recursion relation:

$$Q_{\uparrow}(u; u_j) = (\rho^{1/2}/2)^{iu} \prod_j \Gamma(\frac{u - v_j}{i})$$
$$Q_{\downarrow}(u; u_j) = (\rho^{1/2}/2)^{-iu} \prod_j \Gamma(\frac{v_j - u}{i})$$

right hand side depends on v_i roots of Λ.

$$\mu_{\uparrow}(u) = \mu_{\uparrow}(u+i) + (-)^{N} \rho \frac{\mu_{\uparrow}(u-i)}{\Lambda(u)\Lambda(u-i)}$$

$$\mu_{\downarrow}(u) = \mu_{\downarrow}(u-i) + (-)^{N} \rho \frac{\mu_{\downarrow}(u+i)}{\Lambda(u)\Lambda(u+i)}$$
(1)

have continuous fraction representation.

$$r_{n+1} = 1 + \frac{(-)^n \rho^{1/2}}{\Lambda_n \Lambda_{n-1} r_n}$$

suppose we have a Inear recursion:

$$t_n a_n = a_{n+1} + a_{n-1}$$

suppose we have a lnear recursion:

$$t_n a_n = a_{n+1} + a_{n-1}$$

 \triangleright then for two linearly independant solutions a_n, b_n , one has

$$w_n = a_n b_{n+1} - b_n a_{n+1}$$

is constant.

► The quantum wronskien

$$W_{\mu}(u) = \mu_{\uparrow}(u)\mu_{\downarrow}(u-i) - (-)^{N}\rho \frac{\mu_{\uparrow}(u-i)\mu_{\downarrow}(u)}{\Lambda(u)\Lambda(u-i)}$$

can be represented as an infinite determinant (so called Hill determinant).

► The quantum wronskien

$$W_{\mu}(u) = \mu_{\uparrow}(u)\mu_{\downarrow}(u-i) - (-)^{N}\rho \frac{\mu_{\uparrow}(u-i)\mu_{\downarrow}(u)}{\Lambda(u)\Lambda(u-i)}$$

can be represented as an infinite determinant (so called Hill determinant).

$$W_{\mu}(u) = \prod_{j} rac{\sinh \pi(u - u_k)}{\sinh \pi(u - v_k)}$$

► The quantum wronskien

$$W_{\mu}(u) = \mu_{\uparrow}(u)\mu_{\downarrow}(u-i) - (-)^{N}\rho \frac{\mu_{\uparrow}(u-i)\mu_{\downarrow}(u)}{\Lambda(u)\Lambda(u-i)}$$

can be represented as an infinite determinant (so called Hill determinant).

$$W_{\mu}(u) = \prod_{j} rac{\sinh \pi(u - u_k)}{\sinh \pi(u - v_k)}$$

Numerator=Bethe roots, Denominator=transfer matrix roots.

▶ look for linear combination:

$$Q(u) = Q_{\uparrow}(u) - \xi Q_{\downarrow}(u)$$

▶ look for linear combination:

$$Q(u) = Q_{\uparrow}(u) - \xi Q_{\downarrow}(u)$$

▶ Bethe équations results from cancellation of poles:

$$\frac{Q_{\uparrow}}{Q_{\downarrow}}(u_k) = \xi$$

Noszlowski-Teschner (after Nekrasov Shatashvili) How to get rid of v_k ? We see that in the Hill determinant, the zeros nearly coincide with the poles, so, we try to modify the method so as to make them coincide exactly?

- Noszlowski-Teschner (after Nekrasov Shatashvili) How to get rid of v_k ? We see that in the Hill determinant, the zeros nearly coincide with the poles, so, we try to modify the method so as to make them coincide exactly?
- ▶ modify $\Lambda \to \Lambda_0$ assume Bethe roots coincide with zeros of Λ_0 : v_k :

$$\Lambda_0(u)Q_u = \rho^{1/2}((-)^N Q_{u-i} + Q_{u+i})$$

• with: $\Lambda_0(u) = \prod_k (u - u_k)$

- Noszlowski-Teschner (after Nekrasov Shatashvili) How to get rid of v_k ? We see that in the Hill determinant, the zeros nearly coincide with the poles, so, we try to modify the method so as to make them coincide exactly?
- ▶ modify $\Lambda \to \Lambda_0$ assume Bethe roots coincide with zeros of $\Lambda_0: v_k$:

$$\Lambda_0(u)Q_u = \rho^{1/2}((-)^N Q_{u-i} + Q_{u+i})$$

- with: $\Lambda_0(u) = \prod_k (u u_k)$
- Solve recursion relation:

$$Q^0_{\uparrow}(u;u_j) = (\rho^{1/2}/2)^{iu} \prod_j \Gamma(\frac{u-u_j}{i})$$

$$Q^0_{\downarrow}(u; u_j) = (\rho^{1/2}/2)^{-iu} \prod_i \Gamma(\frac{u_j - u}{i})$$

> zero order Bethe équations from cancellation of poles:

$$\xi = \rho^{2iu_k} \prod_j \frac{\Gamma(\frac{u_k - u_j}{i})}{\Gamma(\frac{u_j - u_k}{i})}, \ \forall k$$

zero order Bethe équations from cancellation of poles:

$$\xi = \rho^{2iu_k} \prod_j \frac{\Gamma(\frac{u_k - u_j}{i})}{\Gamma(\frac{u_j - u_k}{i})}, \ \forall k$$

$$2\pi i n_k = -\log \xi + 2i u_k \log(\rho) + \sum_j \log(\frac{\Gamma(\frac{u_k - u_j}{i})}{\Gamma(\frac{u_j - u_k}{i})}), \ \forall k$$

coincide exactly with Sutherland. Although the approach is entierly different.

▶ This cannot be exact, then improve *Q*:

$$Q_{\uparrow}(u) = Q_{\uparrow}^0(u) \nu_{\uparrow}(u) \; , Q_{\downarrow}(u) = Q_{\downarrow}^0(u) \nu_{\downarrow}(u),$$

▶ This cannot be exact, then improve *Q*:

$$Q_{\uparrow}(u) = Q_{\uparrow}^{0}(u)\nu_{\uparrow}(u) \;, Q_{\downarrow}(u) = Q_{\downarrow}^{0}(u)\nu_{\downarrow}(u),$$

▶ get equation for ν : Same right hand size as Gutzwiller with $\Lambda \to \Lambda_0$

$$\frac{\Lambda}{\Lambda_0}\nu_{\uparrow}(u) = \nu_{\uparrow}(u+i) + (-)^N \rho \frac{\nu_{\uparrow}(u-i)}{\Lambda_0(u)\Lambda_0(u-i)}$$

$$\frac{\Lambda}{\Lambda_0}\nu_{\downarrow}(u) = \nu_{\downarrow}(u-i) + (-)^N \rho \frac{\nu_{\downarrow}(u+i)}{\Lambda_0(u)\Lambda_0(u+i)}$$

ightharpoonup can be solved as a series in ρ for both Λ and ν .

lacktriangle apply wronskian to obtain a nonlinear equation for $u_\uparrow,
u_\downarrow$

- lacktriangle apply wronskian to obtain a nonlinear equation for $u_\uparrow,
 u_\downarrow$
- wronskien identity with wronskien equal to one:

$$\nu_{\uparrow}(u)\nu_{\downarrow}(u-i) = 1 + (-)^{N} \rho \frac{\nu_{\uparrow}(u-i)\nu_{\downarrow}(u)}{\Lambda_{0}(u)\Lambda_{0}(u-i)}$$

- lacktriangle apply wronskian to obtain a nonlinear equation for $u_\uparrow,
 u_\downarrow$
- wronskien identity with wronskien equal to one:

$$\nu_{\uparrow}(u)\nu_{\downarrow}(u-i) = 1 + (-)^{N} \rho \frac{\nu_{\uparrow}(u-i)\nu_{\downarrow}(u)}{\Lambda_{0}(u)\Lambda_{0}(u-i)}$$

by construction $\nu_{\uparrow}, \nu_{\downarrow}$ have their poles at $u_k + im$ and $u_k - im$ with $m \ge 1$, we can solve for:

$$K * (\log(\nu_{\uparrow}(u)\nu_{\downarrow}(u-i))) = \log(\nu_{\uparrow}(u-i)\nu_{\downarrow}(u))$$

- lacktriangle apply wronskian to obtain a nonlinear equation for $u_\uparrow,
 u_\downarrow$
- wronskien identity with wronskien equal to one:

$$\nu_{\uparrow}(u)\nu_{\downarrow}(u-i) = 1 + (-)^{N}\rho \frac{\nu_{\uparrow}(u-i)\nu_{\downarrow}(u)}{\Lambda_{0}(u)\Lambda_{0}(u-i)}$$

by construction $\nu_{\uparrow}, \nu_{\downarrow}$ have their poles at $u_k + im$ and $u_k - im$ with $m \ge 1$, we can solve for:

$$K * (\log(\nu_{\uparrow}(u)\nu_{\downarrow}(u-i))) = \log(\nu_{\uparrow}(u-i)\nu_{\downarrow}(u))$$

▶ set $Y = \nu_{\uparrow}(u - i)\nu_{\downarrow}(u)$, then above equality becomes:

$$\log(Y(u)) = K * \log(1 + \frac{(-)^N \rho Y(u)}{\Lambda_0(u)\Lambda_0(u-i)})$$

K is the Szegö kernel:

$$K(u) = \frac{1}{2\pi} \frac{1}{1 + u^2}$$

► So we get modified Bethe equations:

$$2\pi i n_k = -\log \xi + 2iu_k \log(\rho) + \sum_j \log(\frac{\Gamma(\frac{u_k - u_j}{i})}{\Gamma(\frac{u_j - u_k}{i})})$$
$$+ \int \frac{dv}{2\pi} \left(\frac{1}{u_k - v + i} + \frac{1}{u_k - v}\right) \log(1 + \frac{(-)^N \rho Y(v)}{\Lambda_0(v) \Lambda_0(v - i)})$$

The q-Toda chain.

- pause The q-Toda chain is the XXZ version of Toda.
- ▶ The expression of the Lax matrix is:

$$L_1(z) = \frac{i}{\sqrt{zX_1}} \left(\begin{array}{cc} 1 - zX_1 & \epsilon X_1 \\ \epsilon zX_1x_1^{-1} & . \end{array} \right)$$

The q-Toda chain.

- pause The q-Toda chain is the XXZ version of Toda.
- ► The expression of the Lax matrix is:

$$L_1(z) = \frac{i}{\sqrt{zX_1}} \left(\begin{array}{cc} 1 - zX_1 & \epsilon x_1 \\ \epsilon zX_1x_1^{-1} & . \end{array} \right)$$

- $\mathbf{x}_1=e^{2i\pi q_1/\omega_2},~X_k$ acts by translating $q_k\colon q_k o q_k+i\omega_1,$ $q=e^{2i\pi\omega_1/\omega_2}.$ dual quantities exchange $\omega_1,~\omega_2$
- Commuting Weyl pairs:

$$X_1x_1=qx_1X_1$$

$$\tilde{X}_1 \tilde{x}_1 = \tilde{q} x_1 \tilde{X}_1$$

Ruisjenaars Hamiltonian

$$H = \sum_{k=1}^{N} X_k \left(1 + \epsilon^2 \frac{x_{k+1}}{x_k}\right)$$

Ruisjenaars Hamiltonian

$$H = \sum_{k=1}^{N} X_k (1 + \epsilon^2 \frac{x_{k+1}}{x_k})$$

► TQ equation:

 $\rho = \epsilon^{2N}$

$$\Lambda(u)Q_{u} = \rho^{1/2}((-)^{N}Q_{u-i} + Q_{u+i})$$

Ruisjenaars Hamiltonian

$$H = \sum_{k=1}^{N} X_k (1 + \epsilon^2 \frac{x_{k+1}}{x_k})$$

► TQ equation:

$$\Lambda(u)Q_{u} = \rho^{1/2}((-)^{N}Q_{u-i} + Q_{u+i})$$

$$\rho = \epsilon^{2N}$$

$$\Lambda(u) = \prod_{1}^{N} -2i \sinh \frac{\pi(u - u_k)}{\omega_2}$$

Q entire

Q entire

- Q entire
- ▶ Modular invarient $\tilde{\Lambda}Q$ satisfyed with ω_1 , ω_2 exchanged.

$$\tilde{\Lambda}(u)Q_u = \rho^{1/2}((-)^N Q_{u-i} + Q_{u+i})$$

- Q entire
- ▶ Modular invarient $\tilde{\Lambda}Q$ satisfyed with ω_1 , ω_2 exchanged.

$$\tilde{\Lambda}(u)Q_u = \rho^{1/2}((-)^N Q_{u-i} + Q_{u+i})$$

Behavior at infinity:

$$|Q(u)| \sim e^{-\pi N(\frac{1}{\omega_1} + \frac{1}{\omega_2})/2}$$

Modularity

Now, Hill determinant becomes elliptic function

$$W_{\mu}(u) = \prod_{j} \frac{\theta(\pi(u-u_k))}{\theta(\pi(u-v_k))}$$

Modularity

► Now, Hill determinant becomes elliptic function

$$W_{\mu}(u) = \prod_{j} \frac{\theta(\pi(u-u_k))}{\theta(\pi(u-v_k))}$$

▶ Connection between two "modular transform" hyperelliptic curves?, apparently meaningless for ω_1, ω_2 real? (τ imaginary).

Modularity

Now, Hill determinant becomes elliptic function

$$W_{\mu}(u) = \prod_{j} \frac{\theta(\pi(u-u_k))}{\theta(\pi(u-v_k))}$$

- ▶ Connection between two "modular transform" hyperelliptic curves?, apparently meaningless for ω_1, ω_2 real? (τ imaginary).
- due to modularity, for $\omega_1/\omega_2 = p/r$ a fraction, some highly nontrivial algebraic relations relate Λ and $\tilde{\Lambda}$ spectra due to $r\omega_1 = p\omega_2$.

$$\widetilde{W}_{\mu}(u) = \prod_{j} \frac{\widetilde{\theta}(\pi(u - u_{k}))}{\widetilde{\theta}(\pi(u - v_{k}))}$$

Solution of TQ

The Sutherland approximation for Q⁰ must be Modular. Use invarient Γ Function:

$$egin{aligned} & rac{\Gamma_q(u+i\omega_1)}{\Gamma_q(u)} = -2i\sinh_{\omega_2}(u) \ & rac{\Gamma_q(u+i\omega_2)}{\Gamma_q(u)} = -2i\sinh_{\omega_1}(u) \end{aligned}$$

ightharpoonup then improve Q_0 by assuming factorization:

$$Q_{\uparrow}(u) = Q_{\uparrow}^{0}(u)\nu_{\uparrow}(u)\tilde{\nu}_{\uparrow}(u) , Q_{\downarrow}(u) = Q_{\downarrow}^{0}(u)\nu_{\downarrow}(u)\tilde{\nu}_{\downarrow}(u),$$

Kashaev Sergeev

Table:
$$\omega_1/\omega_2 = i, \eta = 0$$

n	root	Н	H – H _{KS}
0	.3535533905	4.594358809 i	$2 \ 10^{-18}$
-1	.612117375	-13.878304778+6.1612962432443 i	$5 \ 10^{-15}$
-2	.79079992	-31.32504489969-12.153338942 i	$3 \ 10^{-14}$
3	.935447530	-33.71547676874-54.1710567 i	$3 \ 10^{-17}$

I compare the first four energies H obtained for $\omega_1/\omega_2=i,\eta=0$, at fifth order with those of Kashaeev and Sergeev (table 3 and 4 of their paper). For the three first values n=0,-1,-2,-3 of the Bethe equations

Sciarappa

Table: $\omega_1/\omega_2 = 2^{-1/2}, \eta = 0$

n	root	Н
		0.460-040-400-
0	.462871608964	2.460524271907
-1	.680791907983	3.598470877254
-2	.844632649750	4.4628893132238

I compare the energies H obtained for $\omega_1/\omega_2=2^{-1/2},\eta=0$, at third order in ρ , with those of table 5 of Sciarappa (Sc) . The three first values n=0,-1,-2 are in agreement to his precision 10^{-10} .

Sciarappa

Table: $\omega_1 = 2^{-1/2}, \omega_2 = 1, \eta = \log(3)$
--

n	root	Н
0	.4354731597837	2.752848101914
-1	.6178613438775	3.883834678235
-2	.7553058969907	4.746028853867

The simplest problem

▶ Two particles, $\omega_1/\omega_2 = 1$.

The simplest problem

- ▶ Two particles, $\omega_1/\omega_2 = 1$.
- Entire solution of L₂ on the reals of:

$$\phi(x+1) + \phi(x-1) + 2\cos(2\pi x)\phi(x) = E\phi(x)$$

Ground state was obtained independently by Marino and Kashaev-Sergeev.

quantum =classical motion on curve:

$$2\cos(2\pi y) + 2\cos(2\pi x) = E$$

Conclusions

- ► Wave functions?
- q a root of unity?