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TBA and tree expansion 3

Z(L,R) = Tr
⇥
e�RH

⇤
(1)

where the trace is taken in the full Hilbert space. Assuming that R ⌧ L, our goal is to evaluate the leading
term of the free energy

F (R) = lim
L!1

1

L
logZL(R). (2)

We restrict ourselves to the simplest case of a theory with diagonal S-matrix S(u, v) and one single type
of quasiparticle excitation, but the argument is general. Here u is the rapidity variable, which parametrises
the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
the n-particle sector,

�j = 2⇡nj with nj integer, j = 1, . . . ,M . (3)

Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
M -particle sector of the Hilbert space can be decomposed as a sum of products of normalised states

In =
X

n1<...<nM

|n1, . . . , nM ihn1, . . . , nn|. (5)

If we denote by EM (n1, . . . , nM ) the eigenvalue of the Hamiltonian for the state |I1, . . . , IN i, the partition
function is given by the series

Z(L,R) =
1X

M=0

X

n1<n2<···<nM

e�RE(n1,...,nM ). (6)

Our goal is to replace in the thermodynamical limit L ! 1 the discrete sums by multiple integrals. For
that we have first to get rid of the ordering of the quantum numbers. We can insert a factor which kills
the configurations with coinciding quantum numbers, after which the sum can be taken over non-restricted
integers,

Z(L,R) =
1X

M=0

1

M !

X

n1,...,nM

Y

j<k

(1� �jk) e
�RE(n1,...,nM ). (7)

Expanding the product of Kronecker symbols, one obtains the cumulant expansion

Z(L,R) = 1 +
1

2!

X

n1,n2

e�RE(n1,n2) �
1

2

X

n

e�RE(n,n) + . . . (8)

which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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Thermodynamic Bethe Ansatz 
(TBA)  [Yang&Yang, 1969]  

— thermodynamics of 1-dim. 
integrable systems at finite 
temperature. 


Since [Al. Zamolodchikov (1990) 
TBA became the main tool 
to compute finite size 
effects in 1+1 dim. 
relativistic field theories


More recently TBA related methods are used in 
computation of correlation functions, e.g. 
hexagonalization method in N=4 SYM 

(see Didina’s talk).


Need to learn how to evaluate efficiently the sum over 
the virtual particles in different problems. 


Is it possible to replace the original TBA arguments 
by a more refined QFT/statistical formulation? 

Cut the cylinder and glue it 
back by inserting a complete 
set of virtual states (wrapping 
particles) 
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In this talk we construct from scratch an effective QFT 
generating the exact cluster expansion for TBA

— For simplicity we take an integrable theory with one single neutral particle.

— In view of applications to N=4 SYM the scattering matrix is not supposed 

    to be of difference type and no relativistic symmetry is assumed, only a 

    mirror transformation.

Woynarovich, 2004: gaussian fluctuations around 
the saddle point of the Y-Y potential.  


Pozsgay, 2010: showed that there is another O(1) 
contribution from the measure. 


Kato&Wadati, 2004: exact cluster expansion.

I.K., Serban, Vu 2018  graph expansion for the free 
energy with periodic and open b.c.  

Balog’94, Saleur 1999

The question was posed decades ago and the answer is in principle yes

although the effective QFT has not been yet formulated
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E → ip̃, p → iẼ

— no Lorentz invariance assumed, only a mirror 
transformation exchanging space and time 

physical particles

m
irr

or
 p

ar
tic

le
s

space

tim
e

Physical 
theory

Mirror 
theory

= =
Euclidean 1+1 dimensional integrable field 
theory with factorized scattering

p = p(u), E = E(u)Rapidity variable:

S(u, v) S(v, u) = 1

S(u, u) = − 1

Two-particle S-matrix: u v
=

S(u, v)S(u, v2γ) = 1

(θ ≡ πu)

==

(c.f. Roberto’s talk)

unitarity:

crossing
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Mirror transformation as analytical continuation

Example 1: Lorentz-invariant 
massive integrable QFT

γ uγ

u

physical particles

m
irr

or
 p

ar
tic

le
s

space

tim
e

For an observer living in the physical space, 

a mirror particle looks as physical particle 
with complex rapidity

p(u) → p̃(u) = − iE(uγ) γ : u → uγ

Physical theory → Mirror theory
S(u, v) → S̃(u, v) ≡ S(uγ, vγ)

E(u) → Ẽ(u) = − ip(uγ)

E = m cosh(πu)
E2 − p2 = m2

uγ ≡ u + i/2

u−γ ≡ u − i/2

Example 2: N=4 SYM

u−γ

uγu
2g + i /2

2g − i /2−2g − i /2

−2g + i /2

up = m sinh(πu)

Phys=Mirror
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I. PERIODIC BOUNDARY CONDITIONS

A

B

Degrees of freedom of the effective QFT: 

particles winding around the A and B cycles

Physical theory defined on the A-cycle of length L, 

Mirror theory defined on the B-cycle of length R
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physical particles

m
irr

or
 p

ar
tic

le
s

physical space

= mirror time

m
irr

or
 s

pa
ce



=p

hy
si

ca
l t

im
e

R

L

The Hilbert space of the effective QFT is spanned on the elementary 
excitations on a torus with asymptotically large space and time circles.

Two types of them: time-wrapping particles in the physical theory and and 
space-wrapping particles in the mirror theory

Operators creating wrapping particles: 

A(u) = time-wrapping operator

B(u) = space-wrapping operator

Particles wrapping the same cycle do not scatter 
but particles wrapping different cycles do: 

1. Wrapping operators

=
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A(u)

A(uγ)

B(u)

B(u−γ)

creates real particle in the physical  theory

/virtual particle in the mirror theory


creates real particle in the mirror  theory

/virtual particle in the physical theory


creates space-wrapping  particle in the mirror  theory


creates space-wrapping  particle in the physical  theory
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B(v)A(u) = S(vγ, u) A(u)B(v), [B(u), B(v)] = [A(u), A(v)] = 0

⟨L |A(u) = e−LE(u) ⟨L | , B(u) |R⟩ = e−RẼ(u) |R⟩

Fock-space realisation:

⟨L |R⟩ = 1

⟨
M

∏
j=1

B(vj)
N

∏
k=1

A(wk)⟩ ≡ ⟨L |
M

∏
j=1

B(vj)
N

∏
k=1

A(wk) |R⟩

Fock-space expectation value:
⟨𝒪⟩ = ⟨L |∙

∙ 𝒪 ∙
∙ |R⟩

For any operator define

∙
∙

∙
∙where       is the anti-normal product:


 all B’s are on the left of all A’s

2. Algebra of the wrapping operators

⟨
M

∏
j=1

B(vj)
N

∏
k=1

A(wk)⟩ =
M

∏
j=1

N

∏
k=1

S(vγ
j , wk)

M

∏
j=1

e−RẼ(vj)
N

∏
k=1

e−LE(wk)

Expectation value of N time-wrapping 
and M space-wrapping operators: w2

u1 u2 uM

w1

. . .

wN
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3. Operator form of Bethe-Yang equations 

1 + e−iLp̃(uj)
M

∏
k=1

S̃(uk, uj) = 0, j = 1,…, M

B-Y equations in the mirror channel

u1 u2 uj uM

uj uj

M+N equations for M+N rapidities

⟨(1 + B(w−γ
k ))

M

∏
j=1

B(uj)
N

∏
k=1

A(wk)⟩ = 0, k = 1,...,N

Similarly, in the physical channel

wk
w−γ

k

.

⟨
M

∏
j=1

B(uj)
N

∏
k=1

A(wk) (1 + A(uγ
j ))⟩ = 0, j = 1,...,M

Operator form:

u1 u2 uM

uγ
j

uj

.

w2

u1 u2 uM

w1

. . .

wN
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ph
ys

ic
al

mirror

𝒵(L, R) = Tr[e−R H̃] = ∑
ψ

⟨ψ |e−R H̃ |ψ⟩
⟨ψ |ψ⟩

=
∞

∑
M=0

∑
n1<n2<...<nM

e−R(Ẽ(u1)+...+Ẽ(uM))

−Lp̃(uj) + i
M

∑
k=1

log S̃(uk, uj) = 2πnj, j = 1,…, M

4. Partition function at finite volume R    
Finite volume partition function in the physical theory

= thermal partition function in the mirror theory

— can be computed by the techniques of the 
Thermodynamical Bethe Ansatz (justified in the 
thermodynamical limit when the number of the 
wrapping particles is large).

Instead, we will evaluate exactly the sum over particles without using TBA:    

The sum goes over the Bethe quantum numbers which 
appear in the logarithmic form of the Bethe-Yang equations: 

Our aim is to sum over the solutions of the Bethe-Yang equations 
(with no approximation) without solving them.
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4. Fock-space representation of the partition function    .
→

∞

∑
m=0

1
m! ∑

r1,...,rm≥1
∑

n1,...,nm

m

∏
j=1

(−1)rj−1

rj
e−rjRẼ(uj)𝒵(L, R) =

∞

∑
M=0

∑
n1<n2<…<nM

M

∏
j=1

e−RẼ(uj)

Relax the constraint                                 by introducing multi-wrapping particles

as explained yesterday by Dinh-Long 

n1 < n2 < … < nM
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mirror

(−1)r−1

r
e−rRẼ(u)

scatters (r-1) 
times with itself, 
S(u,u)=-1

r-wrapping particle: 

cyclic symmetry 
of order r

wraps length r R
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∑
r1,...,rm

∑
n1,...,nm

M

∏
j=1

e−rjRẼ(uj) = ⟨∮
ℝ

⋯∮
ℝ

m

∏
j=1

duj

2πi

∂ log(1 + A(uγ
j ))

∂uj ∑
r1,...,rm

(−1)rj−1

rj

m

∏
j=1

B(uj)rj⟩

. Express the discrete sum over Bethe and wrapping numbers as a contour integral

around the real axis

Ω ≡ exp [∮ℝ

du
2πi

log (1 + B(u)) ∂
∂u

log (1 + A(uγ))]
𝒵(L, R) = ⟨Ω⟩

.perform the sum over all wrapping numbers:

Ω — operator creating the physical 
vacuum (finite R) out of the bare 
vacuum (asymptotically large R) 

.Instead of solving the B-Y equations we can impose them by the operator constraint

∏
j

(A(uj) + 1) = 0 - selects both the physical and the unphysical solutions
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5. Excited states in the physical channel

The rapidities of the excited state are determined by the exact Bethe equations

⟨ (1 + B(w−γ
j )

N

∏
k=1

A(wk) Ω⟩ = 0, j = 1,2,...,N

𝒵(L, R, w) = (−1)N⟨exp [−∮w−γ

du
2πi

log (1 + A(uγ)) ∂
∂u

log (1 + B(u))] Ω⟩ = ⟨Ωw⟩

𝒵(L, R, w) = ⟨
N

∏
k=1

A(wk) Ω⟩(1)

(2)

Write (1) as a contour integral:

Ωw ≡ exp [∮ℝ+w−γ

du
2πi

log (1 + B(u)) ∂
∂u

log (1 + A(uγ))]
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mirror
w = {w1, . . . , wN}

Partition function for an excited 
state with rapidities

Relation to Dorey-Tateo:
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5. Free-field representation

B(u) = e−φ(u), A(uγ) = e−iφ̄(u)

[φ(u), φ̄(v)] = i log S̃(u, v)

⟨L | φ̄(u) = φ̄∘(u)⟨L | , φ(u) |R⟩ = φ∘ |R⟩

[φ̄(u), φ̄(v)] = [φ(u), φ(v)] = 0

⟨φ̄(u) φ(v)⟩ = iS̃(u, v) + φ̄(u)∘ φ∘(v)

⟨e−iφ̄(u) e−φ(v)⟩ = S̃(v, u) e−iφ̄∘(u)−φ∘(v)

φ∘(u) = RẼ(u), φ̄∘(u) = Lp̃(u)

Expectation value: ⟨⋯⟩ = ⟨L |∙
∙ ⋯ ∙

∙ |R⟩ ∙
∙

∙
∙with anti-normal product


 �(all φ′�s on the left of all φ′�s)

Ω = exp [∮𝒞

du
2πi

log⟨1 + e−φ(u)⟩ ∂u log (1 + e−iφ̄(u))]

Wrapping operators as vertex operators:

𝒵(L, R) = ⟨Ω⟩
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+ exponentially small in L

5. Continuum spectrum approximation

∮
ℝ

d log (1 + e−iφ̄(u))
2πi

(⋯) →
∞

∫
−∞

dφ̄(u)
2π

dφ̄(u) = φ̄′�du + . . . (?)

Now expand the contour slightly away the real axis:

=>  Jacobian = (functional) Gaudin determinant 

dφ̄(u) → [φ̄′ �(u) − ∫
dv
2π

K̂(u, v) φ̄′�(v)] du

⟨(φ̄(u) − ∫ℝ

dv
2π

∂vφ̄(v)
i log S̃(v, u)

1 + eφ(v) ) Ω⟩ = 0by the Ward identity

K̂(u, v) = −
1
i

∂u log S(v, u)
1 + eφ(v)
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Introduce by hand fermions which generate the non-diagonal terms in the 
Gaudin determinant: 

Ω̌ = exp
∞

∫
−∞

du
2π [log (1 + e−φ(u)) φ̄′�(u) +

ψ̄(u)ψ′�(u)
1 + eφ(u) ]

𝒵(L, R) = ⟨Ω̌⟩

⟨φ̄(u) φ(v)⟩c = i log S̃(u, v), ⟨ψ(u)ψ̄(v)⟩ = ilogS̃(u, v)
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5. Path integral

φ, φ̄

𝒵(L, R) = ∫ 𝒟[fields] e−𝒜[fields]

−𝒜[fields] = ∫
du
2π (log(1 + e−φ) ∂φ̄ +

ψ̄ ∂ψ
1 + eφ

+ (φ̄ − φ̄∘)ρ+(φ − φ∘)ρ̄ + ϑ̄ψ + ψ̄ϑ)
−i∫

du
2π

dv
2π

log S̃(u, v)(ρ̄(u)ρ(v) − ϑ(u)ϑ̄(v))

φ∘(u) = RẼ(u), φ̄∘(u) = Lp̃(u)

ρ, ρ̄ θ, θ̄Impose the correlators by introducing a pair of auxiliary fields

ρ, ρ̄ ϑ, ϑ̄ψ̄, ψ
commutative grassmanian

the dependence on R and L through the classical fields:

. The bosonic part of the path integral was obtained using different 
arguments by Jiang, Komatsu and Veskovi [ARXIV:1906.07733] 
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5. Localisation

 Q-exact localisation term

𝒜 = 𝒜∘ + ∫
du
2π

Q(u) ℬ

ℬ = ∫
du
2π ( − log(1 + e−φ) ∂ψ + ψρ + θ(φ − φ∘)) − i∫

du
2π

dv
2π

θ(u) log S̃(u, v) ρ(v)

𝒵 → 𝒵t = ∫ e−𝒜t 𝒜 → 𝒜t = 𝒜∘ + tQℬ, 𝒜∘ ≡ − L∫
du
2π

p′�(u)ρ(u) .

∂𝒵t

∂t
= ∫ e−𝒜∘−tQℬ(−Qℬ) = ∫ Q (e−𝒜∘−tQℬℬ) = 0

t → ∞ : 𝒵 = e−𝒜∘

Qℬ=0

Take the limit of 
infinite perturbation:

Q = ψ̄
δ

δφ
+ φ̄

δ
δψ

+ρ̄
δ

δϑ
+ϑ̄

δ
δρ Q2 = 0

𝒜∘ = − ∫
du
2π

φ̄∘ρ

By standard localisation argument integral  localises to the critical point:
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φ(u) = RẼ(u) − i∫
dv
2π

log S̃(u, v) ρ(v)

ρ(u) = ∂u log(1 + e−φ(u))

As a consequence of localisation : the theory is one-loop exact and the 
gaussian fluctuations of the bosons and the fermions cancel => no quantum 
corrections to the critical action at all

The critical point:                    

ϵ(u) = RẼ(u) − ∫ K̃(v, u) log(1 + e−ϵ(v))

𝒵(L, R) = exp (L∫
dp̃(u)

2π
log [1 + e−ϵ(u)])

ϵ(u) = φcrit(u) - pseudo energy                      

equation for the 

critical point identical to 
the TBA integral equation:

The partition function:
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6. Feynman graphs = exact cluster expansion

φ̄′� log(1 + e−φ) =
∞

∑
n=1

(−1)n−1

n
φ̄′� φnVertices:

Propagators: ⟨φ̄′�(u)φ(v)⟩ = − K̃(u, v), ⟨ψ̄′�(u)ψ(v)⟩ = K̃(u, v)

K̃(u, v) =
1
i

∂u log S̃(u, v)

u1 u2

n

(u , r)

n

(u , r)

n

(u , r) u1 u2
Feynman rules  (c.f. Dinh-Long’s talk)

bosonic loops fermionic loopstrees

The bosonic loops and the fermionic loops cancel and the free 
energy is given by the sum over tree graphs. 

I.K., Didina Serban, D. L. Vu, 
arXiv[hep-th]1805.02591, 
1809.05705, 1906.01909
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TBA and tree expansion 3

Z(L,R) = Tr
⇥
e�RH

⇤
(1)

where the trace is taken in the full Hilbert space. Assuming that R ⌧ L, our goal is to evaluate the leading
term of the free energy

F (R) = lim
L!1

1

L
logZL(R). (2)

We restrict ourselves to the simplest case of a theory with diagonal S-matrix S(u, v) and one single type
of quasiparticle excitation, but the argument is general. Here u is the rapidity variable, which parametrises
the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
the n-particle sector,

�j = 2⇡nj with nj integer, j = 1, . . . ,M . (3)

Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
M -particle sector of the Hilbert space can be decomposed as a sum of products of normalised states

In =
X

n1<...<nM

|n1, . . . , nM ihn1, . . . , nn|. (5)

If we denote by EM (n1, . . . , nM ) the eigenvalue of the Hamiltonian for the state |I1, . . . , IN i, the partition
function is given by the series

Z(L,R) =
1X

M=0

X

n1<n2<···<nM

e�RE(n1,...,nM ). (6)

Our goal is to replace in the thermodynamical limit L ! 1 the discrete sums by multiple integrals. For
that we have first to get rid of the ordering of the quantum numbers. We can insert a factor which kills
the configurations with coinciding quantum numbers, after which the sum can be taken over non-restricted
integers,

Z(L,R) =
1X

M=0

1

M !

X

n1,...,nM

Y

j<k

(1� �jk) e
�RE(n1,...,nM ). (7)

Expanding the product of Kronecker symbols, one obtains the cumulant expansion

Z(L,R) = 1 +
1

2!

X

n1,n2

e�RE(n1,n2) �
1

2

X

n

e�RE(n,n) + . . . (8)

which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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=

Wrapping particles 
weakly interacting after 
being put in a large box 

Non-interacting clusters of 
wrapping particles: behave as free 
fermions with renormalized energy

The meaning of the tree diagrams in the cluster expansion: 
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II. OPEN B. C. IN THE MIRROR CHANNEL

𝒵ab(R, L) = ⟨Ba |e−H(R)L |Bb⟩

= Tr[e−H̃ab(L)R]

time⟨Ba | |Bb⟩

tim
eba

ℱab(R, L) ≡ log 𝒵ab(R, L) − log 𝒵(R, L) = log ga(R) + log gb(R) + O(e−mL)

Boundary entropy

R̃a(u)R̃a(−u) = 1

boundary reflection matrix

S(u, − v)S(−u, v) = 1

[Ghoshal-Zamolodchikov]

Thermal partition function with open b.c.

[Affleck-Ludvig’ 91]

a,b -  integrable boundary 
conditions 

“g-functions”

==
==

Parity conserving bulk scattering matrix

=

R̃a(−u) = S̃(u, − u)R̃a(u) R̃a(u) ≡ Ra(uγ)

R-finite, L-asymptotically large
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Asymptotically large cylinder= [circle of length R]x[interval of length L] 

In the physical theory:  parity 
invariant states propagating 
between the two boundaries

Algebra of the wrapping operators:

Aab(u)

B(v)Aab(u) = S(vγ, u)S(−vγ, u) Aab(u)B(v)

a −u b

u
a b

u

B(u)

In the mirror theory: particles 
wrapping the cylinder

baba

Excitations in the effective QFT:

tim
e

time

[Aab(u), Aab(u)] = 0, [B(u), B(v)] = 0

⟨L |Aab(u) = ⟨L | e−2LE(u)Ra(u)Rb(u) B(u) |R⟩ = e−RẼ(u) |R⟩Fock space vacua:

⟨𝒪⟩ ≡ ⟨L |∙
∙ 𝒪 ∙

∙ |R⟩Expectation value:
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uj

a b

uj

a b

uj

a b= =

Boundary Bethe-Yang equations

Operator representation:

uj

a b

uγ
j

⟨
M

∏
k=1

B(uk) (1 + Aab(uγ
j ))⟩ = 0, j = 1,...,M .

Ωab ≡ exp∮ℝ+

du
2πi

log (1 + B(u)) ∂u log [1 + Aab(uγ)]

𝒵ab(L, R) = ⟨Ωab⟩

Fock-space representation of the cylinder partition function
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Aab(uγ) = e−iφ̄ab(u), B(u) = e−φ(u)Free-field representation:

[φ(v), φ̄ab(u)] = − i log[S̃(v, u)S̃(−v, u)]

⟨L | φ̄ab(u) = φ̄∘
ab(u) ⟨L | , φ(u) |R⟩ = φ∘ |R⟩

φ̄∘
ab(u) = 2Lp̃(u) + i log Ra(u)Rb(u) − 2π sign(u)

φ∘(u) = RẼ(u)

𝒵ab(R, L) = ⟨Ω̌ab⟩ Ω̌ab = exp∫
∞

0

du
2π

φ̄ab∂uφ − ψ̄ab∂uψ
1 + eφ

[ψab(v)ψ̄(u)] = − i log[S̃(v, u)S̃(−v, u)]

Continuum spectrum approximation: add fermionic partners for the measure
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𝒵ab(L, R) = ∫ 𝒟[fields] e−𝒜[fields]

Path integral for open boundary fonditions:

−𝒜 = ∫
du
2π ( φ̄ab ∂φ − ψ̄ab ∂ψ

1 + eφ
+ (φ̄ab − φ̄∘

ab)ρ+(φ − φ∘)ρ̄ + θ̄ψ + ψ̄abθ)
+i∫

du
2π

dv
2π

log[S̃(u, v)S̃(u, − v)](−ρ̄(u)ρ(v) + θ(u)θ̄(v))

φ̄∘
ab(u) = 2Lp̃(u) + i log R̃a(u) + i log R̃b(u) − 2π sign(u), φ∘(u) = RẼ(u)

𝒵ab =
Det(1 − K̂−)
Det(1 − K̂+)

exp (∫
∞

0

du
2π

∂uφ̄∘
ab log[1 + e−φ])The theory is 

one-loop exact:

Dorey, Fioravanti, Rim, Tateo’04; Pozsgay’2010

K̂±(u, v) =
1
i

1
1 + eϵ(u)

∂u (log S̃(u, v) ± log S̃(u, − v))
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𝔻 ≡ ei∂u /2K ( u ) = K 0 ( u + i a / 2 ) + K 0 ( u − i a / 2 ) = ( 𝔻 a + 𝔻 − a ) K 0 K 0 ( u , v ) =
π

cosh π ( u − v )

K → 𝕂 =
𝔻 a + 𝔻 − a

𝔻 + 𝔻 − 1 K ( u , v ) =
1
i

∂ u log S ( u , v )

𝒜 = ∫ d2x [ 1
4π

(∂μϕ)2 +
2μ2

sin πb2
cosh(bϕ)]

p(u) = m sinh πu, E(u) = m cosh πu

One particle, no bound states;  
relativistic theory: mirror=physical

S(u, v) =
tanh ( πu

2 − iπ
2ν )

tanh ( πu
2 + iπ

2ν )

ν = 1 +
1
b2

, a = 1 −
2
ν

(0 < b ≤ 1)

log S(u) = (𝔻a + 𝔻−a)log S0(u) 𝔻 = exp ( i
2

∂
∂u )Shift operator:

(𝔻 + 𝔻−1)K0(u) = 2πδ(u)

S0(u) = tanh
π(u − i/2)

2

K0(u, v) =
1
i

∂u log S0(u, v) - “universal kernel”

III. EXAMPLE: SINH-GORDON
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φ → φ + R E ( u )

𝒜[fields] = ∫
du
2π ( φ̄ φ′�− ψ̄ ψ′�

1 + eφ
+ (φ̄ − φ̄∘)ρ+(φ − φ∘)ρ̄ + θ̄ψ + ψ̄θ)

+i∫
du
2π

dv
2π (ρ̄(u)ρ(v) + θ(u)θ̄(v))(𝔻a + 𝔻−a)log S0(u, v)

φ̄ → Lp(u) + (𝔻 + 𝔻−1)φ̄ ψ̄ → (𝔻 + 𝔻−1)ψ̄

𝒜 = ∫
du
2π [φ(𝔻 + 𝔻−1)∂φ̄ −

(𝔻a + 𝔻−a)∂φ̄
1 + e−φ ]

+∫
du
2π [ψ(𝔻 + 𝔻−1)∂̄ψ −

ψ̄(𝔻a + 𝔻−a)∂ψ
1 + eφ ]

(all expression below need to be rigorously defined)

The action can be cast into a quasi-local form by a field redefinition

[𝔻 + 𝔻−1] φ = − (𝔻a + 𝔻−a)log(1 + e−φ)Critical point: 

“Discrete Liouville equation”
[Zamolodchikov, 

Lukyanov]
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Summary

Path integral formulation of the Thermodynamic Bethe Ansatz 

The theory is one-loop exact. Explains why there are only 
exponential corrections to the free energy

Works also for scattering matrices not of difference type, as in AdS/CFT 

Can be generalised to the case of non-diagonal scattering (nested Bethe 
Ansatz) and bound states

Hopefully can be adapted to other geometries with application to 
AdS/CFT 
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Thank you!


