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Thermodynamic Bethe Ansatz
(TBA) [Yang&Yang, 1969]

Since [Al. Zamolodchikov (1990)
TBA became the main tool T

to compute finite size R
effects in 1+1 dim.
relativistic field theories L

O

More recently TBA related methods are used in
computation of correlation functions, e.qg.
hexagonalization method in N=4 SYM

(see Didina’s talk).

Need to learn how to evaluate efficiently the sum over
the virtual particles in different problems.

Is it possible to replace the original TBA arguments
by a more refined QFT/statistical formulation?
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— thermodynamics of 1-dim.
integrable systems at finite
temperature.

(-

Cut the cylinder and glue it
back by inserting a complete
set of virtual states (wrapping
particles)




The gquestion was posed decades ago and the answer is in principle yes
although the effective QFT has not been yet formulated

Balog’94, Saleur 1999

Woynarovich, 2004: gaussian fluctuations around
the saddle point of the Y-Y potential.

Pozsgay, 2010: showed that there is another O(1)
contribution from the measure.

Kato&Wadati, 2004: exact cluster expansion.
.K., Serban, Vu 2018 graph expansion for the free
energy with periodic and open b.c.

In this talk we construct from scratch an effective QFT
generating the exact cluster expansion for TBA

— For simplicity we take an integrable theory with one single neutral particle.
— In view of applications to N=4 SYM the scattering matrix is not supposed
to be of difference type and no relativistic symmetry is assumed, only a

mirror transformation.
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Euclidean 1+1 dimensional integrable field
theory with factorized scattering * }< >{

(c.f. Roberto’s talk)

Rapidity variable: p = p(u), E = E(u) (0 = 7u)

unitarity: S(u,v) S(v,u) =1 25 ‘ ‘
Two-particle S-matrix: ><
YN crossing  S(u,V)S(u, v*") = 1 k/—\)/
S(u,u) = —

physical particles

— no Lorentz invariance assumed, only a mirror "
transformation exchanging space and time =
_ An o
E—ip,p—IE . £
Physical Mirror ‘é'
theor
theory y Space
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Mirror transformation as analytical continuation ohysical particles

time

For an observer living in the physical space,
a mirror particle looks as physical particle
with complex rapidity _q_w>
O —

Physical theory — Mirror theory YO ! S
Su,v) = Su,v) = Su’,v") - , g —

p) — plu) = — iEw) A E

Ew) — Eu)=—ip(u) space

—

Example 1: Lorentz-invariant
massive integrable QFT

Example 2: N=4 SYM

o —p2 — 2
E = m cosh(zu) =u+i/2

p = msinh(wu)

Phys=Mirror

U
!
u
}
u’'=u—1/2
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. PERIODIC BOUNDARY CONDITIONS

Physical theory defined on the A-cycle of length L,
Mirror theory defined on the B-cycle of length R

Degrees of freedom of the effective QFT:
particles winding around the A and B cycles
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1. Wrapping operators

The Hilbert space of the effective QFT is spanned on the elementary
excitations on a torus with asymptotically large space and time circles.

Two types of them: time-wrapping particles in the physical theory and and
space-wrapping particles in the mirror theory

physical particles

A Operators creating wrapping particles:
8 0 2
- g 5 A(u) =time- i t
= S 1) = time-wrapping operator @
(O n
Q. L — Q
- o v
O =
‘é' S B (1) = space-wrapping operator @
< > '
R . .
Particles wrapping the same cycle do not scatter
physical space but particles wrapping different cycles do:
= mirror time

@)-®
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A (l/t) creates real particle in the physical theory
/virtual particle in the mirror theory

B(u) creates real particle in the mirror theory
/virtual particle in the physical theory

A(l/ly) creates space-wrapping particle in the mirror theory

B(l/t —}/) creates space-wrapping particle in the physical theory
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2. Algebra of the wrapping operators

ul u2 o o MM

Expectation value of N time-wrapping
and M space-wrapping operators: %fzv

Fock-space realisation:

BWAm) = S0, u) A)B(v), [Bw), B(v)] = [A(w), A(v)] =0

(L|A) = e EW(L|, B(u)|R) = e *EW|R) (LIR) =1
Fock-space expectation value: For any operator define
M N M N <@>=<L|:@:|R>
<HB(VJ')HA(WI<)> = (L] HB(VJ)HA(W) |R) where , . is the anti-normal product:
=1 k=1 =1 k=l all B’s are on the left of all A’s
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3. Operator form of Bethe-Yang equations

M+N equations for M+N rapidities

B-Y equations in the mirror channel

M
L+ e PO ]S up =0, j=1...M
k=1

Operator form:

M N
<HB(uj)HA(wk) (1 + A(ujy))> =0, j=1,..M

=1 k=1

Similarly, in the physical channel

<<1 + B(wk_y))

M

N
B(uj)HA(wk)> =0, k=1,...N
=1 k=1

J

Workshop New Trends in Integrable Systems, 9-20 September 2019, Osaka City University, Japan

up u,

Ltl I/l2 I/l]

10



4. Partition function at finite volume R

Finite volume partition function in the physical theory
= thermal partition function in the mirror theory
— can be computed by the techniques of the

Thermodynamical Bethe Ansatz (justified in the
thermodynamical limit when the number of the

wrapping particles is large).

=y
Y
N
)
T
i
N
physical

b‘

mirror

Instead, we will evaluate exactly the sum over particles without using TBA:

—RH 00
e | y) Z Z —RE))+..+Euy,))
— e 1 coe M

_RT |
ZL.R) =Tife*M = Y W
W <W|W> M=0 n;<n,<..<ny,

The sum goes over the Bethe quantum numbers which
appear in the logarithmic form of the Bethe-Yang equations:

M
—Lp(u) +i ) logS(u.u) =2an, j=1,...M
k=1

Our aim is to sum over the solutions of the Bethe-Yang equations
(with no approximation) without solving them.
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4. Fock-space representation of the partition function

® Relax the constraint n; <n, <... <ny, by introducing multi-wrapping particles
as explained yesterday by Dinh-Long

r— 1
F(L,R) = 2 2 H ~REw) — Zm' 2 Z H( 1) o~ TREG)

M=0 n;<n,<...<my, j=1 etz gy, j=1
2 R £
=, N e

scatters (r-1)
times with itself,
S(u,u)=-1

r-wrapping particle: (= 1)~
e—rRE(u) wraps length r R
r

cyclic symmetry
of order r
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® Instead of solving the B-Y equations we can impose them by the operator constraint

H(A(”‘J) + 1) =0 - selects both the physical and the unphysical solutions

Express the discrete sum over Bethe and wrapping numbers as a contour integral
around the real axis

m_ Jy. 0log| 1+ A(u) 1yl m
3 3 Herm= (-4 113 L) e [ncs)
J=1 ;o j=1

..... Vg Rpseenstly J=1 J Fiseensl

® perform the sum over all wrapping numbers:

Z(L,R) = (Q)

Q = exp d—u,log (1+Bw)) ailog(l + A(u))
u

R 27l

Q) — operator creating the physical
vacuum (finite R) out of the bare
vacuum (asymptotically large R)
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5. Excited states in the physical channel

Partition function for an excited
state with rapidities w = {w, ..., wy}

R

/|
.
e
.
.
~ .-

physical

mirror L

N
(1)  ZLRw= < | JEXD Q>
k=1
The rapidities of the excited state are determined by the exact Bethe equations

(2) < (1+B(wj-Y>ﬂA(wk) Q> =0, j=1.2,..N
k=1

Relation to Dorey-Tateo:

Write (1) as a contour integral:

27l

F(L,R,w) = (—1)N<exp H d—u,log (1+A@)) ailog (1+B(w)
w7 U

2) - (a)

Q,, = exp 3E d—”_ log (1 + B(u)) 9 log (1+ A®u"))
R+w—7 du

27l
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5. Free-field representation

Wrapping operators as vertex operators:  B(y) = ¢~ ?®,  A(u?) = ¢ %W

[p(u), p(v)] = i log S(u, v)
[@(w), W] = [e(u), (V)] =0
(Llpu) = @°(u)}(L|, @w)|R)=¢"|R)

@°(u) = RE(w),  @"(u) = Lp(u)

Expectation value: <> — <L| :|R) with anti-normal product.: -
(all @’s on the left of all ¢'s)

(P(u) p(v)) = iS(u,v) + p(u) °(v)
(e~ IPW) g=0WY = §(y, 1) =P W=¢°V)

Z(L,R) = (Q) Q = exp CJ; —log(1l + e™%") 9,log (1 + e~7®)
% 2
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5. Continuum spectrum approximation

Now expand the contour slightly away the real axis:

dlog (1 + =) T dp(u)
d o -

27l
R —00

dp(u) = @'du + ... (?)

5 + exponentially small in L
T

n 27 1 4+ e?™

o 1 ~
by the Ward identity <<gb(u) — J ﬂavqb(v)l 0g 5(v, 1) > Q> =0

dv , A
dp(u) — [@’(u) - JZ—VK(M V) @’(V)] du K(u,v) = —

T

=> Jacobian = (functional) Gaudin determinant
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I 1+ evW)
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Introduce by hand fermions which generate the non-diagonal terms in the
Gaudin determinant:

Z(L,R) = <Q>

w(u)y'(u)
1 4+ ev@W

; T d
Q = exp J 2_u [log (1 + e‘q’(“)) @' (u) +
T

(W) p(v)), = ilog S(u,v), (wWip(v)) = ilogS(u, v)
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5. Path integral

Impose the correlators by introducing a pair of auxiliary fields 7.0 0,6

Q, @ 2 p_ l/_j’ 14 19, 1§
commutative grassmanian

F(L,R) = J@[ﬁelds] ¢~ fields]

W oy
+ e?

du

—df[fields] = [ <log(1 +e ?)op + + (@ — @)+ (p — @°)p + Ny + 1/719)

T

du dv

_ ,-Jz_ﬂz_ﬂ log S(u, v) (5(1)p(v) = 9w)I())

the dependence on R and L through the classical fields:

@°() = RE(w), ¢°(u) = Lp(u)

® The bosonic part of the path integral was obtained using different
arguments by Jiang, Komatsu and Veskovi [ARXIV:1906.07733]
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5. Localisation

ﬂ=ﬂ°+[ﬂQ(u) B
27

du
A = - Jz—éﬂ p
Q-exact localisation term 4
Q—‘i+‘i+‘i+z§i 2
0 Vs 59T ) 0" =0
du _ . | du dv -
B = —( —log(l+e ) oy+yp+0(p—¢ )> — i [ =——=—0(u) log S(u,v) p(v)
21 2T 21

By standard localisation argument integral localises to the critical point:

du
T > Zt:[e—ﬂz A - A, = +1tQA, QY°E—L[2—ﬂp’(u)p(u).

0Z,

En J e = [Q (e 7710 %) =0

Take the limit of o
infinite perturbation:  — 0 : Z =e" |
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" . - fav, o
The critical point: @(u) = RE(u) — sz— log S(u, v) p(v)
T

p(u) =a, log(l + e ~#(1)

equation for the _rin— | 7 ool e
critical point identical to e(u) () (v, u) log(l +e™")

the TBA integral equation: ,
e(u) = ™ (u) - pseudo energy

5
The partition function: Z(L,R) = exp (LJ l;(u) log [1 n e—e(u)]>
T

As a consequence of localisation : the theory is one-loop exact and the
gaussian fluctuations of the bosons and the fermions cancel => no quantum
corrections to the critical action at all

Workshop New Trends in Integrable Systems, 9-20 September 2019, Osaka City University, Japan

20



6. Feynman graphs = exact cluster expansion |.K., Didina Serban, D. L. Vu,
arXiv[hep-th]1805.02591,

X (—1 n—1
Vertices: @'log(1+e™*) =) = ¢ ¢"
n

n=1

Propagators: — (5/ug(v)) = ~ Kw,v),  (#/(y(v)) = K(u,v)

- 1 ~
K(u,v) = —0d, log S(u, v)
I

Feynman rules (c.f. Dinh-Long’s talk) _Ié JZ; Ié; ] —

D=
7r)

\"‘V- . ...}
: .4‘
4 ‘.
:“ .“ -I‘ »\.
“0 P- > . ob.
et 7'*}...."

trees bosonic loops fermionic loops

The bosonic loops and the fermionic loops cancel and the free
energy is given by the sum over tree graphs.
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1809.05705, 1906.01909
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The meaning of the tree diagrams in the cluster expansion:

OO CO » CEC GO
(= Ol

Non-interacting clusters of
wrapping particles: behave as free
fermions with renormalized energy

.--’
- -
- -

--’

--’

~.- -
-

-

-
-‘

.--’

-
.-
-

Wrapping particles
weakly interacting after
being put in a large box
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Il. OPEN B. C. IN THE MIRROR CHANNEL

Thermal partition function with open b.c.

Z R L) = (B, |e”"®EB,) (B, (;_1me, ()I5,) a,b - integrable boundary
— Tr[e—[:lab(L)R] a(\l ()b gT conditions

Parity conserving bulk scattering matrix  S(u, — v)S(—u,v) =1

boundary reflection matrix [Ghoshal-Zamolodchikov]

RWR (—u) =1 > - |o

R(—u)=S8u,-wRw |j<=-K R () = R (u")

Boundary entropy [Affleck-Ludvig’ 91]
R-finite, L-asymptotically large

L(;‘Tczb(Ra L) = lOg :Zoab(Rv L) _ log Z’(R, L) — lOg ga(R) + lOg gb(R) + O(e_mL)
“g-functions”
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Asymptotically large cylinder= [circle of length R]x[interval of length L]
Excitations in the effective QFT:
In the physical theory: parity

Invariant states propagating
between the two boundaries

Ap(y  af=={)p e, B ali [ (78

In the mirror theory: particles
wrapping the cylinder

Uu
— — u
a —Uu b a b
Algebra of the wrapping operators: BWA (1) = SO, u)S(—v?, u) A ,()B(v)

[A (), Ay ()] = 0, [B(u), B(»)] =0
Fock space vacua:  (L|A(u) = (L| e ™R (w)R,u)  B(u)|R) = e *EW|R)

Expectation value: (O) = (L|:0 :|R)
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Boundary Bethe-Yang equations

J
a b = a —— r) b = ac o )b
Operator representation:
M u!
[1Bw (1 + Aab(u?)) -0, j=1,..M. — "
k=1 ! a b
u

Fock-space representation of the cylinder partition function

Z (L, R) = (Q,,)

Q, = expﬂg d—”, log (1+B(w)) d,log |1+ A,,u))|

R, 27l
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Free-field representation: A )= e” P B(u) = e~ W

o), 4w = — i log[S(v, w)S(—v, w)]
(L @.w) = @2w)(L|, ¢@u)|R)=¢"|R)

BLp(u) = 2Lp(w) + i log R ()R, () — 27 sign(u)
@°(u) = RE(u)

Continuum spectrum approximation: add fermionic partners for the measure

[Wab(v)'w_”(u)] — = llOg[S(V, M)S(—V, I/l)]

x < “du $up0,P — Wap0 W
Z ,(R.L) = (L, O =eXJ' 9P = WOy
’ ($20) ab = &P ) 27 1 + e¥
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Path integral for open boundary fonditions:

Z (L,R) = J@[ﬁelds] g~ /lields]

_g=[du @abaqﬂ_'pabal//
27 1+ e

+ (P, — P+ (@ — @°)p + Ow + l/7ab9>

| du dv ~ ~ _ 2
n Jz_— log[S(u, v)S(u, — )(—p(w)p(v) + 0w)0(v))

T2

@, (u) = 2Lp(u) + ilog R (u) + ilog R, (u) — 2z sign(u), ¢°(u) = RE(u)

i Det(1 — K~ ©d
The theory is g =D ( ¢ ) exp A 5 7 1og[1 + e~
one-loop exact: Det(1 — K+) 0 27
K*(u,v) P 9, (log S(u, v) £ log §( )
“(u,v) =— , logd(u,v) £ logdS(u, —v
P 1+ ec O .

Dorey, Fioravanti, Rim, Tateo’04; Pozsgay’2010
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lll. EXAMPLE: SINH-GORDON

1 2 1 2
_ el 2 1 —1_=
Qf—[dx 4ﬂ(aﬂ¢) +sin7rb2 cosh(bg) z/—1+b2, a=1 y O0O<b<1
One particle, no bound states; o
relativistic theory: mirror=physical S ) tanh (7 — 27)
u,v) = .
p(u) = msinh ru, E(u) = m cosh zu tanh <% + %)
_ 0
log S(u) = (D" + D~%)log Sy(u) Shift operator: D = exp <5()—>
a(u—1i/2) .
So(u) = tanh
1
Ky(u,v) = 7(9” log So(u,v) - “universal kernel” (D + D™HKy(u) = 276(u)
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(all expression below need to be rigorously defined)

du - !/ Ny !/ 3
o [fields] = [ <¢ UL C (@ — @ )p+(p —@°)p + Oy + l/79>
21 1+ e?

du dv

+i Jz—— (P(w)p(v) + 60w)O() ) (D* + D™9log Sy(u, v)
T2

The action can be cast into a quasi-local form by a field redefinition

» — Lpw)+D+D Hp v — (D+D hHy

d D4 4+ D™ og
ﬂ:J "N oD + Do — & )(p]
27 l +e9
du = w (DY 4+ D)oy

+ | — |w(D + D Hoy —
[27r " 1w 1+ e¥ ]

Critical point: [[D + [D_l] ¢ = — (D+ D™ log(l +e77)
“Discrete Liouville equation”
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[Zamolodchikov,

Lukyanov]
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Summary

Path integral formulation of the Thermodynamic Bethe Ansatz

The theory is one-loop exact. Explains why there are only
exponential corrections to the free energy

Works also for scattering matrices not of difference type, as in AdAS/CFT

Can be generalised to the case of non-diagonal scattering (nested Bethe
Ansatz) and bound states

Hopefully can be adapted to other geometries with application to
AdS/CFT
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Thank youl!
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