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Non equilibrium quantum physics

Experimental results and theoretical progresses

Advent of cold atoms, optical lattices and
molecular electronic devices

⇓

new experimental insight in phenomena of
quantum non-equilibrium statistical mechanics

Kinoshita, Wenger, Weiss: A quantum

Newton’s cradle, Nature 440 (2006) 900
There has been much theoretical progress in the last decade. Studies focused on:

quantum quench: responses to excitations or pulses
emergent hydrodynamics: steady properties (do not vary in time)
Paradigms:

effective reservoirs −→ open, non-unitary systems
hamiltonian reservoirs −→ close, unitary systems
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Non equilibrium quantum physics

Partition protocol

1 Prepare two semi-infinite halves of a homogeneous 1D quantum system
thermalized independently at temperatures TL and TR

2 At time t = 0 connect the two halves so that they can exchange energy and
particles

3 The initial state |ini〉 evolves for t > 0 with Hamiltonian H = HL + HR + δH.
At large times it reaches a steady regime

For an observable O the steady state limit means

Ost := lim
t→∞

lim
L→∞
〈e iHtOe−iHt〉ini
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Non equilibrium quantum physics

Local thermodynamic equilibrium

Assumption: local thermodynamic equilibrium
We observe the system on the scale of clouds of particles (10−6m) rather
than at the scale of particles (10−10m).
After some local relaxation time, physical properties vary only on space-time
scales much larger than microscopic ones.
The system decomposes in fluid cells, each one in thermal equilibrium.
Potentials β(x , t) vary slowly in adjacent cells.

As a consequence:
Averages of local observables tend at large times, to averages evaluated in
local Gibbs ensembles with space-time dependent potentials

〈O(x , t)〉 = Tr[ρ(x , t)O] 〈O〉β(x,t)
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Non equilibrium quantum physics

Conservation laws and normal modes

Conserved quantities Qi =
∫
dxqi (x , t) in involution =⇒ conservation laws

∂tqi (x , t) + ∂x ji (x , t) = 0 , i = 1, ...,N

Average of densities qi (x , t) = 〈qi 〉 and currents ji (x , t) = 〈ji 〉 also satisfy

∂tqi (x , t) + ∂x ji (x , t) = 0

Equation of State links ji = Fi (q)
Jacobian

Jij =
∂Fi (q)

∂qj
=⇒ ∂tqi (x , t) +

∑
j

Jij∂xqj (x , t)) = 0

J can be diagonalized with a change of coordinates q→ n (normal modes)

∂tni (x , t) + v effi ∂xni (x , t)) = 0

v effi can be interpreted as velocity of propagation of the i-th normal mode ni .
Invariance of this equation under rescaling (x , t) 7→ (ax , at) shows that the
solutions should depend only on ξ = x/t.
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Generalized Hydrodynamic Description

Generalized Gibbs Ensemble (GGE)

Goal of this approach:

Compute the profile of functions ni (ξ).

Integrable systems −→ infinity of conserved charges = constraints on the ensemble
Density matrix has to take them into account to describe the dynamics of the
system

ρGGE =
e−

∑
i βi Qi

Tr[e−
∑

i βi Qi ]

Complete set of charges Qi = {Ii ,Xs,i}, local and quasi-local

Local charges Ij can be expressed in terms of
densities Ij =

∑
` ij (`) which have support on a

finite number of sites, e.g. in XXZ

Ij = −i
d j

dθj
log T1

(
θ +

iπ

2

)∣∣∣∣
θ=0

Quasi-local charges Xs,j also have densities
Xs,j =

∑
` xs,j (`) but their support is on an

extended region with exponentially decaying
norm [Ilievski et al. 2015]

Xs,j = −i
d j

dθj
log Ts

(
θ +

iπ

2

)∣∣∣∣
θ=0
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Integrabilty and TBA

Factorised S-matrix and TBA

In QFT2 integrability implies factorised S-matrix, no particle production and
conservation of the set of momenta. [Parke, 1979]
Study the steady states after local relaxation time by use of Thermodynamic
Bethe Ansatz [Yang, Yang 1966 - Al. Zamolodchikov, 1990]
For IQFT2 with diagonal factorized S-matrix =⇒ Doyon, Castro-Alvaredo,
Yoshimura, Phys. Rev. X6, 041065 (2016) (DCY)

However, many theories have internal degrees of freedom and symmetries
organising particles in multiplets. The S-matrix is non diagonal

(Sab)kl
mn(θij ) = Uab(θij )(R(a,b))kl

mn(θij )

State with N-particles |θ1, a1; ...; θN , aN〉 on a periodic box of length L. Add
to this state a probe particle with rapidity θ and impose periodic boundary
conditions on the wave function.
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Integrabilty and TBA

Diagonalisation of color transfer matrix

This leads to Bethe-Yang condition of quantization of momenta

e ipa(θ)L =
N∏

j=1

Sabj (θ − θj ) =
N∏

j=1

Uab(θ − θj )Tra
N∏

j=1

(R(a,b))
kj mj+1
mj nj (θ − θj )︸ ︷︷ ︸

T (θ|{θj})=color transfer matrix

R(a,b)-matrix acts on the a, b multiplets of particles, indices k, l ,m, n run in a
multiplet. Between different multiplets a, b the S-matrix is block-diagonal.

Diagonalisation of T by Bethe ansatz. The eigenvalues of T enter the
Bethe-Yang equation (BYE).
They depend on the rapidities θn of the particles but also on some
parameters un characterising the states (the Bethe roots), that are
determined by a set of Bethe Ansatz Equations (BAE).
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Integrabilty and TBA

Thermodynamic limit

Thermodynamic limit N →∞. The set of rapidities θ1, ..., θN and of Bethe
roots u1, ..., uM tend to continuum.

solutions uk organize in n-strings

u
(n)
k,α = r

(n)
k +

iπ

2
(n + 1− 2α) , α = 1, ..., n

introduce density of possible string centres σn(θ)
density of occupied string centres ρn(θ)
density of holes (unoccupied string centres) ρ̄n(θ) = σn(θ)− ρn(θ)
density of occupied quasi-particle states ρp(θ) such that∑N

j=1 ... 7−→
∫
dθρp(θ)...

Split the product on all Bethe roots as

M∏
k=1

· · · =
∏
n∈U

Mn∏
k=1

n∏
α=1

· · ·

U = set of all possible types of strings (depends on the model)
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Integrabilty and TBA

Perturbed coset CFT’s and Dynkin TBA

Here we study the case where R(θ) is the R-matrix of Uq(G), restricted at q =
root of 1, for some algebra G = A,D,E . In the RSOS basis, these S-matrices
describe the perturbed CFT coset models

Gk × G`
Gk+`

+ φid,idadj

S(θ) = X (θ)Sk (θ)⊗ S`(θ)

Spectrum of kinks of mass m(a) (Perron-Frobenius eigenvector of G) separating
colored vacua with RSOS(k)× RSOS(`) strucutres.

TBA is encoded on product of Dynkin
diagrams G � Ak+`−1
FR, Tateo, Valleriani 1992 — Quattrini, FR,
Tateo 1993
see also: Kuniba, Nakanishi, Suzuki, 1994 and
2011
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Integrabilty and TBA

Thermodynamic Bethe Ansatz (TBA)

Log-derivatives of BYE+BAE lead to

σ(a)
n (θ) = δn`p

′(a)(θ) +
rankG∑

b=1

ϕ(a,b) ∗ ρ(b)n (θ) +
k+`−1∑

m=1

In,mϕ ∗ ρ(a)m (θ)

Kernels (g = dual CoxeterG)

ϕ̃(a,b)(κ) = 2π

(δab − 1
2 cosh πκ

g

Gab

)−1

− δab

 , ϕ(θ) =
g

2 cosh gθ
2

Gab is the incidence matrix of the G Dynkin diagram, In,m is the incidence matrix
of Ak+`−1 Dynkin diagram

Minimizaton of free energy with the constraints of BYE and BAE leads to the
G � Ak+`−1 TBA equations

log y (a)
n (θ) = δn`p

′(a) − ϕ(a,b) ∗ logY (b)
n (θ) + Inmϕ ∗ logY (a)

m (θ)
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Integrabilty and TBA

Universal form and Y-system

Functions y (a)
n defined as

y (a)
n (θ) =

ρ
(a)
n (θ)

ρ̄
(a)
n (θ)

=
density of "string centres"

density of holes

Y (a)
n (θ) = 1 + y (a)

n (θ) =
σ
(a)
n (θ)

ρ̄
(a)
n (θ)

Ŷ (a)
n (θ) = (1 + y (a)

n (θ)−1)−1 =
ρ
(a)
n (θ)

σ
(a)
n (θ)

= n(a)n (θ) = occupation numbers

This can be recast in a set of functional equations (Y-system of G � Ak+`−1 type)

y (a)
n

(
θ +

iπ

g

)
y (a)

n

(
θ − iπ

g

)
=

rankG∏
b=1

Ŷ (b)
n (θ)Gab

k+`−1∏
m=1

Y (a)
m (θ)Inm
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TBA for GHD

Compact notation

Introduce the matrix Φ of kernel functions with entries

Φ(a,b)
n,m = ϕ(a,b)(θ)δn,m − In,mδ

a,bϕ(θ)

Also introduce a vector notation for the currents

q = {qi , i = 1, 2, 3, ...}

TBA can be compactly written as

log y (a)
n = ν(a)n −Φ(a,b)

n,m ∗ logY (b)
m

where ν(a)n = m(a)δn` cosh θ

Averages of densities can be written as

q(a) =
k+`−1∑

n=1

∫
dθh(a)(θ) logY

(a)
` (θ)
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TBA for GHD

Formulation of TBA with GGE

Conserved charges act as

Q|θ1, a1; ...; θN , aN〉 =
N∑

k=1

h(ak )(θk )|θ1, a1; ..., θN , aN〉

h(a)(θ) one particle eigenvalue of Q. If relativistic (θ = rapidity):

h
(a)
1 (θ) = m(a) cosh θ , h

(a)
2 (θ) = m(a) sinh θ

If Galilean (θ = velocity):

h
(a)
1 (θ) = e(a)(θ) = m(a)θ2/2 , h

(a)
2 (θ) = p(a)(θ) = m(a)θ

Q0 = N, Q1 = H, Q2 = P... and [Qi,Qj ] = 0 (also quasi-local charges)

In the formulation of TBA we assume the generalized hamiltonian:

HGGE =
∑
a,n

∫
ρ(a)n (θ)w (a)

n (θ)dθ

New driving term w
(a)
n (θ, x , t) = β(x , t) · δn,`h

(a)(θ, x , t)
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TBA for GHD

Formulation of TBA with GGE II

This allows to:
Extend the phase space of the Hamiltonian considering the higher charges as
interactions
Calculate the averages of quantitites using GGE density matrix

Minimization of generalised free energy FGGE leads to generalised TBA

log y (a)
n = w (a)

n −Φ(a,b)
n,m ∗ logY (b)

m

FGGE =

∫
dθw (a)

n (θ) logY (a)
n (θ)

For any density h(θ) define the dressing operation as

[h(a)n ]dr = δn,`h
(a) −Φ(a,b)

n,m ∗ n(b)m [h(b)m ]dr
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TBA for GHD

Spectral current and effective velocity

q(a) = {q(a)i } and ρ(a) = {ρ(a)n } are alternative complete sets to characterize the
GGE ensemble.

q(a) =

∫
dθρ

(a)
` (θ)h(a)(θ) =

∫
dθn

(a)
` (θ)[p

(a)′
` (θ)]drh(a)(θ)

=

∫
dθn

(a)
` (θ)p(a)′(θ)[h

(a)
` (θ)]dr

Currents can be obtained by a Double Wick rotation (crossing operation C)

(x , t) 7→ (it,−ix) , θ 7→ iπ

2
− θ , (e(a), p(a)) 7→ (ip(a),−ie(a))

j (a) =

∫
dθn

(a)
` (θ)[e

(a)′
` (θ)]drh(a)(θ)

Define the spectral currents ρ̂(a)n (θ) = n
(a)
n (θ)[e

(a)′
n (θ)]dr

j (a) =

∫
dθρ̂

(a)
` (θ)h(a)(θ)
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TBA for GHD

Effective velocity

j (a) =

∫
dθv

(a)
` (θ)eff ρ

(a)
` (θ)h(a)(θ)

Effective velocity (Group velocity is v (a)(θ)gr = e(a)′(θ)/p(a)′(θ))

v (a)
n (θ)eff =

[e
(a)′
n (θ)]dr

[p
(a)′
n (θ)]dr

=
ρ̂
(a)
n (θ)

ρ
(a)
n (θ)

=
e(a)′(θ)δn` −

∑
b,m Φ(a,b)

n,m ∗ ρ̂
(b)
m (θ)

p(a)′(θ)δn` −
∑

b,m Φ(a,b)
n,m ∗ ρ

(b)
m (θ)

v (a)
n (θ)eff = v (a)(θ)grδn` +

ρ
(a)
n ∗ v (a)

n (θ)eff − v
(a)
n (θ)eff

p(a)′(θ)

This is the velocity of propagation of quasi-particles. It is determined by ρ(a)n that
completely characterize the steady state.
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TBA for GHD

Bethe-Boltzmann equation

Euler equation ∂th
(a) + ∂x j

(a) = 0 can be written in terms of ρ(a)n

∂tρ
(a)
n + ∂x ρ̂

(a)
n = 0 = ∂tρ

(a)
n + v (a) eff

n ∂xρ
(a)
n

or after some manipulation, in terms of the occupation number n

∂tn
(a)
n (θ) + v (a) eff

n (θ)∂xn
(a)
n (θ) = 0

which is the diagonal form with normal modes propagating with velocity veff .
Similar Euler equation holds for σ and ρ̄ and so entropy is conserved

∂ts + v eff ∂xs = 0

as it should be in a fluid without viscosity.

F. Ravanini (Unibo) GHD in non-diagonal S-matrix IQFT Osaka - Sep 19, 2019 18 / 24



Measurable quantities

Partition protocol problem

Solving the two-reservoir system corresponds to solving the initial value problem{
∂tn(θ, x , t) + v eff (θ)∂xn(θ, x , t) = 0
n(θ, x , 0) = nin(θ, x) = nL(θ)Θ(−x) + nR (θ)Θ(x)

Ansatz
n(θ, x , t) = nin(θ, x − v eff (θ)t)

giving
n(θ, x , t) = nL(θ)Θ(−x + v eff (θ)t) + nR (θ)Θ(x − v eff (θ)t)

If v eff (θ) is monotonic in θ, the equation v eff (θ)t − x = 0 has a unique solution
θ?−→ Solution to initial value problem{

n(θ, x , t) = nL(θ)Θ(θ − θ?(x , t)) + nR (θ)Θ(θ?(x , t)− θ)

v eff (θ?(x , t)) = x
t
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Numerical implementation I

Functions θ?(ξ) are also solutions of

p(θ?(ξ), ξ)dr = 0

Numerical procedure
1 Solve TBA for right and left using w(θ) = βL,R cosh θ −→ εL,R (θ)

2 Compute

nL,R (θ) =
1

1 + eεL,R (θ)

3 Fix ξ. Choose inital value θ?(ξ)0 = 0. Solve p(θ?(ξ), ξ)dr = 0 iteratively

nn(θ) = nL(θ)Θ(θ − θ?n) + nR (θ)Θ(θ?n − θ)

p(θ?n+1)dr = p(θ?n) +

∫
dα

2π
ϕ(θ?n − α)nn(α)p(θ?n)dr

p(θ?n+1) = 0 −→ θ?n+1
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Numerical implementation II

1 Use the stable θ?(ξ) to compute the total occupation number

n(θ, ξ) = nL(θ)Θ(θ − θ?(ξ)) + nR (θ)Θ(θ?(ξ)− θ)

2 We can now compute all dressed quantities h(θ, ξ)dr as we need
3 Finally we can use n(θ, ξ) and hi (θ, ξ)dr to compute all average densities and

currents qi (ξ), ji (ξ)
4 The procedure can be repeated at different rays ξ

In the CFT limit one can compare this results with the expected prediction
(Bernard, Doyon 2016)
JCFT = πc

12 (T 2
L − T 2

R )
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Preliminary numerical results for TIM

We have performed some numerical checks for the simplest non-diagonal A1 � A2
model: the Tricritial Ising Model perturbed by its least relevant operator φ13.
Initial solutions with discontinuity

σ =
βR

βL
=

TL

TR
, K (θ) = n`(θ)p`(θ)
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Conclusions

TBA methods allow to access exact information about non-equilibrium
features of integrable systems.
In particular, in emergent hydrodynamic paradigma, one can describe exactly
and non-perturbatively the stationary currents corresponding to steady states
between two thermal reservoirs.
The TBA has been generalized to cases with non-diagonal S-matrix and put
in relation with Y-systems. Modifications in the Euler equations have been
pointed out.

Many issues have still to be developed within this technique. For example:
Where possible, an NLIE should be used instead. This would give access to
studies in very important models, like e.g. sine-Gordon theory (next step)
Numerical simulations are to be performed and checked against these
theoretical results (TEBD method)
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Thank you
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