On the Generalised Hydrodynamics of Integrable QFT with non-diagonal scattering

Francesco Ravanini

Alma Mater Studiorum - Università di Bologna and INFN - Sezione di Bologna

Workshop New Trends in Integrable Systems
Osaka City University - Sep 19, 2019

Experimental results and theoretical progresses

Advent of cold atoms, optical lattices and molecular electronic devices

new experimental insight in phenomena of quantum non-equilibrium statistical mechanics

Kinoshita, Wenger, Weiss: A quantum

Newton's cradle, Nature 440 (2006) 900

There has been much theoretical progress in the last decade. Studies focused on:

- quantum quench: responses to excitations or pulses
- emergent hydrodynamics: steady properties (do not vary in time)
 Paradigms:
 - ullet effective reservoirs \longrightarrow open, non-unitary systems
 - hamiltonian reservoirs → close, unitary systems

Partition protocol

- lacktriangledown Prepare two semi-infinite halves of a homogeneous 1D quantum system thermalized independently at temperatures T_L and T_R
- At time t = 0 connect the two halves so that they can exchange energy and particles
 The initial state lini evolves for t > 0 with Hamiltonian H = H_t + H_B + δH
- **3** The initial state $|\text{ini}\rangle$ evolves for t>0 with Hamiltonian $H=H_L+H_R+\delta H$. At large times it reaches a steady regime

Partition protocol

- ullet Prepare two semi-infinite halves of a homogeneous 1D quantum system thermalized independently at temperatures T_L and T_R
- At time t = 0 connect the two halves so that they can exchange energy and particles
 The initial state lini evolves for t > 0 with Hamiltonian H = H_L + H_R + δH
- **3** The initial state $|\text{ini}\rangle$ evolves for t>0 with Hamiltonian $H=H_L+H_R+\delta H$. At large times it reaches a steady regime

For an observable \mathcal{O} the **steady state limit** means

$$\mathcal{O}_{\mathsf{st}} := \lim_{t \to \infty} \lim_{L \to \infty} \langle e^{iHt} \mathcal{O} e^{-iHt} \rangle_{\mathsf{ini}}$$

Local thermodynamic equilibrium

Assumption: local thermodynamic equilibrium

- We observe the system on the scale of clouds of particles (10^{-6}m) rather than at the scale of particles (10^{-10}m) .
- After some local relaxation time, physical properties vary only on space-time scales much larger than microscopic ones.
- The system decomposes in *fluid cells*, each one in thermal equilibrium. Potentials $\beta(x, t)$ vary slowly in adjacent cells.

Local thermodynamic equilibrium

Assumption: local thermodynamic equilibrium

- We observe the system on the scale of clouds of particles (10^{-6}m) rather than at the scale of particles (10^{-10}m) .
- After some local relaxation time, physical properties vary only on space-time scales much larger than microscopic ones.
- The system decomposes in *fluid cells*, each one in thermal equilibrium. Potentials $\beta(x, t)$ vary slowly in adjacent cells.

As a consequence:

 Averages of local observables tend at large times, to averages evaluated in local Gibbs ensembles with space-time dependent potentials

$$\langle \mathcal{O}(x,t) \rangle = \text{Tr}[\rho(x,t)\mathcal{O}] \leadsto \langle \mathcal{O} \rangle_{\beta(x,t)}$$

Conservation laws and normal modes

Conserved quantities $Q_i = \int dx q_i(x,t)$ in involution \Longrightarrow conservation laws

$$\partial_t q_i(x,t) + \partial_x j_i(x,t) = 0$$
 , $i = 1,...,N$

Average of densities $\mathfrak{q}_i(x,t)=\langle q_i \rangle$ and currents $\mathfrak{j}_i(x,t)=\langle j_i \rangle$ also satisfy

$$\partial_t \mathfrak{q}_i(x,t) + \partial_x \mathfrak{j}_i(x,t) = 0$$

Conservation laws and normal modes

Conserved quantities $Q_i = \int dx q_i(x,t)$ in involution \Longrightarrow conservation laws

$$\partial_t q_i(x,t) + \partial_x j_i(x,t) = 0$$
 , $i = 1,...,N$

Average of densities $\mathfrak{q}_i(x,t)=\langle q_i \rangle$ and currents $\mathfrak{j}_i(x,t)=\langle j_i \rangle$ also satisfy

$$\partial_t \mathfrak{q}_i(x,t) + \partial_x \mathfrak{j}_i(x,t) = 0$$

Equation of State links $j_i = \mathcal{F}_i(\mathfrak{q})$

Jacobian

$$J_{ij} = \frac{\partial \mathcal{F}_i(\mathfrak{q})}{\partial \mathfrak{q}_j} \qquad \Longrightarrow \qquad \partial_t \mathfrak{q}_i(x,t) + \sum_i J_{ij} \partial_x \mathfrak{q}_j(x,t)) = 0$$

Conservation laws and normal modes

Conserved quantities $Q_i = \int dx q_i(x,t)$ in involution \Longrightarrow conservation laws

$$\partial_t q_i(x,t) + \partial_x j_i(x,t) = 0$$
 , $i = 1,...,N$

Average of densities $q_i(x,t)=\langle q_i\rangle$ and currents $j_i(x,t)=\langle j_i\rangle$ also satisfy

$$\partial_t \mathfrak{q}_i(x,t) + \partial_x \mathfrak{j}_i(x,t) = 0$$

Equation of State links $j_i = \mathcal{F}_i(\mathfrak{q})$

Jacobian

$$J_{ij} = \frac{\partial \mathcal{F}_i(\mathfrak{q})}{\partial \mathfrak{q}_j} \qquad \Longrightarrow \qquad \partial_t \mathfrak{q}_i(x,t) + \sum_j J_{ij} \partial_x \mathfrak{q}_j(x,t)) = 0$$

J can be diagonalized with a change of coordinates $\mathfrak{q} \to \mathfrak{n}$ (normal modes)

$$\partial_t \mathfrak{n}_i(x,t) + \frac{\mathbf{v}_i^{\text{eff}}}{\partial_x \mathfrak{n}_i(x,t)} = 0$$

 v_i^{eff} can be interpreted as velocity of propagation of the *i*-th normal mode \mathfrak{n}_i . Invariance of this equation under rescaling $(x,t)\mapsto (ax,at)$ shows that the solutions should depend only on $\xi=x/t$.

Generalized Gibbs Ensemble (GGE)

Goal of this approach:

Compute the profile of functions $n_i(\xi)$.

Integrable systems \longrightarrow infinity of conserved charges = constraints on the ensemble Density matrix has to take them into account to describe the dynamics of the system

$$ho_{GGE} = rac{e^{-\sum_i eta_i Q_i}}{\mathsf{Tr}[e^{-\sum_i eta_i Q_i}]}$$

Complete set of charges $Q_i = \{I_i, X_{s,i}\}$, local and quasi-local

Local charges I_j can be expressed in terms of densities $I_j = \sum_\ell i_j(\ell)$ which have support on a finite number of sites, e.g. in XXZ

$$I_j = -i \left. \frac{d^j}{d\theta^j} \log T_1 \left(\theta + \frac{i\pi}{2} \right) \right|_{\theta=0}$$

Quasi-local charges $X_{s,j}$ also have densities $X_{s,j} = \sum_{\ell} x_{s,j}(\ell)$ but their support is on an extended region with exponentially decaying norm [llievski et al. 2015]

$$X_{s,j} = -i\frac{d^{j}}{d\theta^{j}}\log T_{s}\left(\theta + \frac{i\pi}{2}\right)\Big|_{\theta=0}$$

Factorised S-matrix and TBA

- In QFT₂ integrability implies factorised S-matrix, no particle production and conservation of the set of momenta. [Parke, 1979]
- Study the steady states after local relaxation time by use of Thermodynamic Bethe Ansatz [Yang, Yang 1966 - Al. Zamolodchikov, 1990]
- For IQFT₂ with diagonal factorized S-matrix ⇒ Doyon, Castro-Alvaredo, Yoshimura, Phys. Rev. X6, 041065 (2016) (DCY)

7 / 24

Factorised S-matrix and TBA

- In QFT₂ integrability implies factorised S-matrix, no particle production and conservation of the set of momenta. [Parke, 1979]
- Study the steady states after local relaxation time by use of Thermodynamic Bethe Ansatz [Yang, Yang 1966 - Al. Zamolodchikov, 1990]
- For IQFT₂ with diagonal factorized S-matrix ⇒ Doyon, Castro-Alvaredo, Yoshimura, Phys. Rev. X6, 041065 (2016) (DCY)
- However, many theories have internal degrees of freedom and symmetries organising particles in multiplets. The S-matrix is non diagonal

$$(S_{ab})_{mn}^{kl}(\theta_{ij}) = U_{ab}(\theta_{ij})(R^{(a,b)})_{mn}^{kl}(\theta_{ij})$$

• State with *N*-particles $|\theta_1, a_1; ...; \theta_N, a_N\rangle$ on a periodic box of length *L*. Add to this state a probe particle with rapidity θ and impose periodic boundary conditions on the wave function.

Diagonalisation of color transfer matrix

• This leads to Bethe-Yang condition of quantization of momenta

$$e^{ip_{a}(\theta)L} = \prod_{j=1}^{N} S_{ab_{j}}(\theta - \theta_{j}) = \prod_{j=1}^{N} U_{ab}(\theta - \theta_{j}) \operatorname{Tr}_{a} \prod_{j=1}^{N} (R^{(a,b)})_{m_{j}n_{j}}^{k_{j}m_{j+1}} (\theta - \theta_{j})$$

$$\mathcal{T}(\theta | \{\theta_{j}\}) = \text{color transfer matrix}$$

 $R^{(a,b)}$ -matrix acts on the a,b multiplets of particles, indices k,l,m,n run in a multiplet. Between different multiplets a,b the S-matrix is block-diagonal.

Diagonalisation of color transfer matrix

This leads to Bethe-Yang condition of quantization of momenta

$$e^{ip_{a}(\theta)L} = \prod_{j=1}^{N} S_{ab_{j}}(\theta - \theta_{j}) = \prod_{j=1}^{N} U_{ab}(\theta - \theta_{j}) \operatorname{Tr}_{a} \prod_{j=1}^{N} (R^{(a,b)})_{m_{j}n_{j}}^{k_{j}m_{j+1}} (\theta - \theta_{j}) \underbrace{\mathcal{T}(\theta | \{\theta_{j}\}) = \text{color transfer matrix}}_{\mathcal{T}(\theta | \{\theta_{j}\}) = \text{color transfer matrix}}$$

 $R^{(a,b)}$ -matrix acts on the a,b multiplets of particles, indices k,l,m,n run in a multiplet. Between different multiplets a,b the S-matrix is block-diagonal.

- ullet Diagonalisation of ${\mathcal T}$ by Bethe ansatz. The eigenvalues of ${\mathcal T}$ enter the Bethe-Yang equation (BYE).
- They depend on the rapidities θ_n of the particles but also on some parameters u_n characterising the states (the Bethe roots), that are determined by a set of Bethe Ansatz Equations (BAE).

Thermodynamic limit

- Thermodynamic limit $N \to \infty$. The set of rapidities $\theta_1, ..., \theta_N$ and of Bethe roots $u_1, ..., u_M$ tend to continuum.
 - solutions u_k organize in n-strings

$$u_{k,\alpha}^{(n)} = r_k^{(n)} + \frac{i\pi}{2}(n+1-2\alpha)$$
 , $\alpha = 1,...,n$

- introduce density of possible string centres $\sigma_n(\theta)$
- density of occupied string centres $\rho_n(\theta)$
- density of holes (unoccupied string centres) $\bar{\rho}_n(\theta) = \sigma_n(\theta) \rho_n(\theta)$
- density of occupied quasi-particle states $\rho_p(\theta)$ such that $\sum_{i=1}^N ... \longmapsto \int d\theta \rho_p(\theta)...$
- Split the product on all Bethe roots as

$$\prod_{k=1}^{M} \cdots = \prod_{n \in \mathfrak{U}} \prod_{k=1}^{M_n} \prod_{\alpha=1}^{n} \cdots$$

 $\mathfrak{U} = \text{set of all possible types of strings (depends on the model)}$

Perturbed coset CFT's and Dynkin TBA

Here we study the case where $R(\theta)$ is the R-matrix of $\mathcal{U}_q(\mathcal{G})$, restricted at q= root of 1, for some algebra $\mathcal{G}=A,D,E$. In the RSOS basis, these S-matrices describe the perturbed CFT coset models

$$\frac{\mathcal{G}_{k} \times \mathcal{G}_{\ell}}{\mathcal{G}_{k+\ell}} + \phi_{\mathrm{adj}}^{\mathrm{id,id}}$$

$$S(\theta) = X(\theta)S_k(\theta) \otimes S_\ell(\theta)$$

Spectrum of kinks of mass $m^{(a)}$ (Perron-Frobenius eigenvector of \mathcal{G}) separating colored vacua with RSOS(k) × RSOS(ℓ) strucutres.

TBA is encoded on product of Dynkin diagrams $\mathcal{G} \diamond A_{k+\ell-1}$ FR, Tateo, Valleriani 1992 — Quattrini, FR, Tateo 1993 see also: Kuniba, Nakanishi, Suzuki, 1994 and 2011

Thermodynamic Bethe Ansatz (TBA)

Log-derivatives of BYE+BAE lead to

$$\sigma_n^{(a)}(\theta) = \delta_{n\ell} p'^{(a)}(\theta) + \sum_{b=1}^{\operatorname{rank} \mathcal{G}} \varphi^{(a,b)} * \rho_n^{(b)}(\theta) + \sum_{m=1}^{k+\ell-1} \mathcal{I}_{n,m} \varphi * \rho_m^{(a)}(\theta)$$

 $\mathsf{Kernels}\;(g = \operatorname{dual} \operatorname{Coxeter} \mathcal{G})$

$$\tilde{\varphi}^{(a,b)}(\kappa) = 2\pi \left[\left(\delta^{ab} - \frac{1}{2 \cosh \frac{\pi \kappa}{g}} \mathcal{G}^{ab} \right)^{-1} - \delta^{ab} \right] \quad , \quad \varphi(\theta) = \frac{g}{2 \cosh \frac{g\theta}{2}}$$

 \mathcal{G}^{ab} is the incidence matrix of the \mathcal{G} Dynkin diagram, $\mathcal{I}_{n,m}$ is the incidence matrix of $A_{k+\ell-1}$ Dynkin diagram

Thermodynamic Bethe Ansatz (TBA)

Log-derivatives of BYE+BAE lead to

$$\sigma_n^{(a)}(\theta) = \delta_{n\ell} p'^{(a)}(\theta) + \sum_{b=1}^{\operatorname{rank} \mathcal{G}} \varphi^{(a,b)} * \rho_n^{(b)}(\theta) + \sum_{m=1}^{k+\ell-1} \mathcal{I}_{n,m} \varphi * \rho_m^{(a)}(\theta)$$

 $\mathsf{Kernels}\;(g = \operatorname{dual} \operatorname{Coxeter} \mathcal{G})$

$$\tilde{\varphi}^{(a,b)}(\kappa) = 2\pi \left[\left(\delta^{ab} - \frac{1}{2 \cosh \frac{\pi \kappa}{g}} \mathcal{G}^{ab} \right)^{-1} - \delta^{ab} \right] \quad , \quad \varphi(\theta) = \frac{g}{2 \cosh \frac{g\theta}{2}}$$

 \mathcal{G}^{ab} is the incidence matrix of the \mathcal{G} Dynkin diagram, $\mathcal{I}_{n,m}$ is the incidence matrix of $A_{k+\ell-1}$ Dynkin diagram

Minimization of free energy with the constraints of BYE and BAE leads to the $\mathcal{G} \diamond A_{k+\ell-1}$ **TBA equations**

$$\log y_n^{(a)}(\theta) = \delta_{n\ell} p'^{(a)} - \varphi^{(a,b)} * \log Y_n^{(b)}(\theta) + \mathcal{I}_{nm} \varphi * \log Y_m^{(a)}(\theta)$$

Universal form and Y-system

Functions $y_n^{(a)}$ defined as

$$y_n^{(a)}(\theta) = \frac{\rho_n^{(a)}(\theta)}{\bar{\rho}_n^{(a)}(\theta)} = \frac{\text{density of "string centres"}}{\text{density of holes}}$$
$$Y_n^{(a)}(\theta) = 1 + y_n^{(a)}(\theta) = \frac{\sigma_n^{(a)}(\theta)}{\bar{\rho}_n^{(a)}(\theta)}$$

$$\hat{Y}_{n}^{(a)}(\theta) = (1 + y_{n}^{(a)}(\theta)^{-1})^{-1} = \frac{\rho_{n}^{(a)}(\theta)}{\sigma_{n}^{(a)}(\theta)} = n_{n}^{(a)}(\theta) = \text{occupation numbers}$$

This can be recast in a set of functional equations (Y-system of $\mathcal{G} \diamond A_{k+\ell-1}$ type)

$$y_n^{(a)}\left(\theta + \frac{i\pi}{g}\right)y_n^{(a)}\left(\theta - \frac{i\pi}{g}\right) = \prod_{b=1}^{\operatorname{rank}\mathcal{G}} \hat{Y}_n^{(b)}(\theta)^{\mathcal{G}_{ab}} \prod_{m=1}^{k+\ell-1} Y_m^{(a)}(\theta)^{\mathcal{I}_{nm}}$$

Compact notation

 \bullet Introduce the matrix Φ of kernel functions with entries

$$\mathbf{\Phi}_{n,m}^{(a,b)} = \varphi^{(a,b)}(\theta)\delta_{n,m} - \mathcal{I}_{n,m}\delta^{a,b}\varphi(\theta)$$

Also introduce a vector notation for the currents

$$\underline{q} = \{q_i, i = 1, 2, 3, ...\}$$

• TBA can be compactly written as

$$\log y_n^{(a)} = \nu_n^{(a)} - \Phi_{n,m}^{(a,b)} * \log Y_m^{(b)}$$

where $\nu_n^{(a)} = m^{(a)} \delta_{n\ell} \cosh \theta$

Averages of densities can be written as

$$\underline{q}^{(a)} = \sum_{n=1}^{k+\ell-1} \int d\theta \underline{h}^{(a)}(\theta) \log Y_{\ell}^{(a)}(\theta)$$

Formulation of TBA with GGE

Conserved charges act as

$$\underline{Q}|\theta_1,a_1;...;\theta_N,a_N\rangle = \sum_{k=1}^N \underline{h}^{(a_k)}(\theta_k)|\theta_1,a_1;...,\theta_N,a_N\rangle$$

 $\underline{h}^{(a)}(\theta)$ one particle eigenvalue of \underline{Q} . If relativistic ($\theta=$ rapidity):

$$h_1^{(a)}(\theta)=m^{(a)}\cosh\theta$$
 , $h_2^{(a)}(\theta)=m^{(a)}\sinh\theta$

If Galilean (θ = velocity):

$$h_1^{(a)}(\theta) = e^{(a)}(\theta) = m^{(a)}\theta^2/2$$
 , $h_2^{(a)}(\theta) = p^{(a)}(\theta) = m^{(a)}\theta$

 $Q_0 = N$, $Q_1 = H$, $Q_2 = P$... and $[Q_i, Q_j] = 0$ (also quasi-local charges)

Formulation of TBA with GGE

Conserved charges act as

$$\underline{Q}|\theta_1, a_1; ...; \theta_N, a_N\rangle = \sum_{k=1}^N \underline{h}^{(a_k)}(\theta_k)|\theta_1, a_1; ..., \theta_N, a_N\rangle$$

 $\underline{h}^{(a)}(\theta)$ one particle eigenvalue of \underline{Q} . If relativistic ($\theta = \text{rapidity}$):

$$h_1^{(a)}(\theta) = m^{(a)}\cosh\theta$$
 , $h_2^{(a)}(\theta) = m^{(a)}\sinh\theta$

If Galilean (θ = velocity):

$$h_1^{(a)}(\theta) = e^{(a)}(\theta) = m^{(a)}\theta^2/2$$
 , $h_2^{(a)}(\theta) = p^{(a)}(\theta) = m^{(a)}\theta$

 $Q_0=N$, $Q_1=H$, $Q_2=P$... and $[Q_i,Q_j]=0$ (also quasi-local charges) In the formulation of TBA we assume the generalized hamiltonian:

$$H_{GGE} = \sum_{a,n} \int \rho_n^{(a)}(\theta) w_n^{(a)}(\theta) d\theta$$

New driving term $w_n^{(a)}(\theta,x,t) = \underline{\beta}(x,t) \cdot \delta_{n,\ell} \underline{h}^{(a)}(\theta,x,t)$

Formulation of TBA with GGE II

This allows to:

- Extend the phase space of the Hamiltonian considering the higher charges as interactions
- Calculate the averages of quantitites using GGE density matrix

Formulation of TBA with GGE II

This allows to:

- Extend the phase space of the Hamiltonian considering the higher charges as interactions
- Calculate the averages of quantitites using GGE density matrix

Minimization of generalised free energy F_{GGE} leads to generalised TBA

$$\log y_n^{(a)} = w_n^{(a)} - \Phi_{n,m}^{(a,b)} * \log Y_m^{(b)}$$

$$F_{GGE} = \int d\theta w_n^{(a)}(\theta) \log Y_n^{(a)}(\theta)$$

Formulation of TBA with GGE II

This allows to:

- Extend the phase space of the Hamiltonian considering the higher charges as interactions
- Calculate the averages of quantitites using GGE density matrix

Minimization of generalised free energy F_{GGE} leads to generalised TBA

$$\log y_n^{(a)} = w_n^{(a)} - \Phi_{n,m}^{(a,b)} * \log Y_m^{(b)}$$

$$F_{GGE} = \int d\theta w_n^{(a)}(\theta) \log Y_n^{(a)}(\theta)$$

For any density $\underline{h}(\theta)$ define the dressing operation as

$$[\underline{h}_n^{(a)}]^{dr} = \delta_{n,\ell}\underline{h}^{(a)} - \mathbf{\Phi}_{n,m}^{(a,b)} * n_m^{(b)}[\underline{h}_m^{(b)}]^{dr}$$

Spectral current and effective velocity

 $\underline{q}^{(a)}=\{q_i^{(a)}\}$ and $\underline{\rho}^{(a)}=\{\rho_n^{(a)}\}$ are alternative complete sets to characterize the GGE ensemble.

$$\underline{q}^{(a)} = \int d\theta \rho_{\ell}^{(a)}(\theta) \underline{h}^{(a)}(\theta) = \int d\theta n_{\ell}^{(a)}(\theta) [p_{\ell}^{(a)'}(\theta)]^{dr} \underline{h}^{(a)}(\theta)$$
$$= \int d\theta n_{\ell}^{(a)}(\theta) p^{(a)'}(\theta) [h_{\ell}^{(a)}(\theta)]^{dr}$$

Currents can be obtained by a Double Wick rotation (crossing operation \mathcal{C})

$$(x,t)\mapsto (it,-ix)$$
 , $\theta\mapsto \frac{i\pi}{2}-\theta$, $(e^{(a)},p^{(a)})\mapsto (ip^{(a)},-ie^{(a)})$

$$\underline{\underline{j}}^{(a)} = \int d\theta n_{\ell}^{(a)}(\theta) [e_{\ell}^{(a)\prime}(\theta)]^{dr} \underline{\underline{h}}^{(a)}(\theta)$$

Define the spectral currents $\hat{\rho}_n^{(a)}(\theta) = n_n^{(a)}(\theta)[e_n^{(a)\prime}(\theta)]^{dr}$

$$\underline{j}^{(a)} = \int d heta \hat{
ho}^{(a)}_\ell(heta) \underline{h}^{(a)}(heta)$$

Effective velocity

$$\underline{j}^{(a)} = \int d\theta v_{\ell}^{(a)}(\theta)^{eff} \rho_{\ell}^{(a)}(\theta) \underline{h}^{(a)}(\theta)$$

Effective velocity (Group velocity is $v^{(a)}(\theta)^{gr} = e^{(a)'}(\theta)/p^{(a)'}(\theta)$)

$$v_{n}^{(a)}(\theta)^{\text{eff}} = \frac{[e_{n}^{(a)'}(\theta)]^{dr}}{[p_{n}^{(a)'}(\theta)]^{dr}} = \frac{\hat{\rho}_{n}^{(a)}(\theta)}{\rho_{n}^{(a)}(\theta)} = \frac{e^{(a)'}(\theta)\delta_{n\ell} - \sum_{b,m} \mathbf{\Phi}_{n,m}^{(a,b)} * \hat{\rho}_{m}^{(b)}(\theta)}{p^{(a)'}(\theta)\delta_{n\ell} - \sum_{b,m} \mathbf{\Phi}_{n,m}^{(a,b)} * \rho_{m}^{(b)}(\theta)}$$

$$\boxed{v_n^{(a)}(\theta)^{\textit{eff}} = v^{(a)}(\theta)^{\textit{gr}} \delta_{n\ell} + \frac{\rho_n^{(a)} * v_n^{(a)}(\theta)^{\textit{eff}} - v_n^{(a)}(\theta)^{\textit{eff}}}{p^{(a)\prime}(\theta)}}$$

This is the velocity of propagation of quasi-particles. It is determined by $\rho_n^{(a)}$ that completely characterize the steady state.

Bethe-Boltzmann equation

Euler equation $\partial_t \underline{h}^{(a)} + \partial_x \underline{j}^{(a)} = 0$ can be written in terms of $\rho_n^{(a)}$

$$\partial_t \rho_n^{(a)} + \partial_x \hat{\rho}_n^{(a)} = 0 = \partial_t \rho_n^{(a)} + v_n^{(a)\,\text{eff}} \partial_x \rho_n^{(a)}$$

or after some manipulation, in terms of the occupation number ${\bf n}$

$$\partial_t n_n^{(a)}(\theta) + v_n^{(a)\,eff}(\theta) \partial_x n_n^{(a)}(\theta) = 0$$

which is the diagonal form with normal modes propagating with velocity ${\bf v}^{\it eff}$. Similar Euler equation holds for σ and $\bar{\rho}$ and so entropy is conserved

$$\partial_t s + v^{eff} \partial_x s = 0$$

as it should be in a fluid without viscosity.

Partition protocol problem

Solving the two-reservoir system corresponds to solving the initial value problem

$$\begin{cases} \partial_t n(\theta, x, t) + v^{eff}(\theta) \partial_x n(\theta, x, t) = 0 \\ n(\theta, x, 0) = n^{in}(\theta, x) = n^L(\theta) \Theta(-x) + n^R(\theta) \Theta(x) \end{cases}$$

Ansatz

$$n(\theta, x, t) = n^{in}(\theta, x - v^{eff}(\theta)t)$$

giving

$$n(\theta, x, t) = n^{L}(\theta)\Theta(-x + v^{eff}(\theta)t) + n^{R}(\theta)\Theta(x - v^{eff}(\theta)t)$$

If $v^{eff}(\theta)$ is monotonic in θ , the equation $v^{eff}(\theta)t - x = 0$ has a unique solution $\theta^* \longrightarrow \text{Solution to initial value problem}$

$$\begin{cases} n(\theta, x, t) = n^{L}(\theta)\Theta(\theta - \theta^{\star}(x, t)) + n^{R}(\theta)\Theta(\theta^{\star}(x, t) - \theta) \\ v^{eff}(\theta^{\star}(x, t)) = \frac{x}{t} \end{cases}$$

Numerical implementation I

Functions $\theta^{\star}(\xi)$ are also solutions of

$$p(\theta^{\star}(\xi),\xi)^{dr}=0$$

Numerical procedure

- Solve TBA for right and left using $w(\theta) = \beta_{L,R} \cosh \theta \longrightarrow \epsilon_{L,R}(\theta)$
- Compute

$$n_{L,R}(heta) = rac{1}{1 + e^{\epsilon_{L,R}(heta)}}$$

9 Fix ξ . Choose inital value $\theta^*(\xi)_0 = 0$. Solve $p(\theta^*(\xi), \xi)^{dr} = 0$ iteratively

$$n_{n}(\theta) = n_{L}(\theta)\Theta(\theta - \theta_{n}^{*}) + n_{R}(\theta)\Theta(\theta_{n}^{*} - \theta)$$

$$p(\theta_{n+1}^{*})^{dr} = p(\theta_{n}^{*}) + \int \frac{d\alpha}{2\pi} \varphi(\theta_{n}^{*} - \alpha) n_{n}(\alpha) p(\theta_{n}^{*})^{dr}$$

$$p(\theta_{n+1}^{*}) = 0 \longrightarrow \theta_{n+1}^{*}$$

Numerical implementation II

• Use the stable $\theta^{\star}(\xi)$ to compute the total occupation number

$$n(\theta,\xi) = n_L(\theta)\Theta(\theta - \theta^*(\xi)) + n_R(\theta)\Theta(\theta^*(\xi) - \theta)$$

- **②** We can now compute all dressed quantities $h(\theta,\xi)^{dr}$ as we need
- Finally we can use $n(\theta, \xi)$ and $h_i(\theta, \xi)^{dr}$ to compute all average densities and currents $\mathbf{q}_i(\xi)$, $\mathbf{j}_i(\xi)$
- lacktriangle The procedure can be repeated at different rays ξ

In the CFT limit one can compare this results with the expected prediction (Bernard, Doyon 2016)

$$J_{CFT} = \frac{\pi c}{12} (T_L^2 - T_R^2)$$

Preliminary numerical results for TIM

We have performed some numerical checks for the simplest non-diagonal $A_1 \diamond A_2$ model: the Tricritial Ising Model perturbed by its least relevant operator ϕ_{13} . Initial solutions with discontinuity

$$\sigma = \frac{\beta_R}{\beta_L} = \frac{T_L}{T_R}$$
 , $K(\theta) = n_\ell(\theta)p_\ell(\theta)$

Conclusions

- TBA methods allow to access exact information about non-equilibrium features of integrable systems.
- In particular, in emergent hydrodynamic paradigma, one can describe exactly and non-perturbatively the stationary currents corresponding to steady states between two thermal reservoirs.
- The TBA has been generalized to cases with non-diagonal S-matrix and put in relation with Y-systems. Modifications in the Euler equations have been pointed out.

Many issues have still to be developed within this technique. For example:

- Where possible, an NLIE should be used instead. This would give access to studies in very important models, like e.g. sine-Gordon theory (next step)
- Numerical simulations are to be performed and checked against these theoretical results (TEBD method)

Thank you

