Cumulants of conserved charges and total
transport currents in GHD: direct summation
of matrix elements?

Dinh-Long Vu
Institut de Physique Théorique, CEA Saclay, based on 1909.xxxxx

September 18, 2019



Table of contents

1. GHD and GGE
2. Cumulants of conserved charges

3. Cumulants of total transport currents



GHD and GGE



Isolated, out-of-equilibrium system

6,,0,....0,




Isolated, out-of-equilibrium system

TL TR



Isolated, out-of-equilibrium system




Hydrodynamic description

Local GGE at the fluid cell around x

Tr[eZi A2 0]
Tr[ezj —ﬂj(x,t)Qj]

(O(x, 1)) =



Hydrodynamic description

Local GGE at the fluid cell around x

Tr[eZi A2 0]

(O(x, 1)) = Tr[eZ AitD]

The state at this cell

{B1, B2, ---Boo} < {{Q1),(Q2), -, (Qoo) }



Hydrodynamic description
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The state at this cell
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Equation of state that describes transport among neighboring cell

9:(Qi(x, 1)) + 0x{Jj(x, 1)) = 0.
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satisfies a functional relation (see Doyon's talk or 1812.02082)
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Individual cumulants

Steady current average

()= [ dov"(0)p(0)a(6)
Covariance matrix
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An unrelated problem, or is it?
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Direct computation?

TBA free energy
dp(0
F(B) = IogTr[er’Bf(X’t)Qf] = (L f 72( ) log[1 + 676(6)]
™

Cumulants of conserved charges are given by its derivatives
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Charge average
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Charge covariance
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Higher cumulants: no rule to express in terms of particle distribution,
Fermi-Dirac factor, simple dressing operations...
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e Summing over mode numbers

28)-% F  erumem

N>0 ni<np<...<npy

e Removing the constraint by 1 — ¢ insertion
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e Transform the sums to integrals
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e Transform the sums to integrals
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e Expand the Gaudin determinant to a sum over forests
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e Transform the sums to integrals

(-1)%
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e Expand the Gaudin determinant to a sum over forests

e The free energy is a free sum over trees whose vertices (6, r) live in
R x Z*. Feynman rules

[ ] _ ( 1)’ ! —rW(G)
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Summing over the trees

Let Y,(0) be the sum of all trees rooted at the point (6, r)
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Summing over the trees

Let Y,(0) be the sum of all trees rooted at the point (6, r)

Y,(0) = =(9’or)+? L i + ...
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One can deduce from this structure that Y;(#) = (=1)"Y{(6)/r? and
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Summing over the trees

Let Y,(0) be the sum of all trees rooted at the point (6, r)
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One can deduce from this structure that Y;(#) = (=1)"Y{(6)/r? and

Y () = e () exp [ Z—:K(nﬁ) log[1+ Y(n)].

The free energy is the sum over all trees
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r>1

d’;gf) log[1+Y(6)].
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Charge average

(Q))p = Tr[e™ =72 Q)] Ta[e™ = 791]

12



Charge average

(Q))p = Tr[e™ =72 Q)] Ta[e™ = 791]

Insertion of identity

N
(O, ..., 0019107, ..., 00 ) = > riqi (0:)(OF , ..., 07167, ..., 01
i=1

12



Charge average

(Qj)p = Te[e™ =2/ Q)] Tu[e™ =]

Insertion of identity
N
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leads to a sum over trees with a charge insertion
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Charge average

(Q))p = Tr[e™ =72 Q)] Ta[e™ = 791]
Insertion of identity
N
(O, ..., 0019107, ..., 00 ) = > riqi (0:)(OF , ..., 07167, ..., 01
i-1

leads to a sum over trees with a charge insertion

© 00 000
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In terms of the dressing operation

19y = [ Lre)go)
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Charge covariance

<Qij> _ Tr[e*ZBfQi Qij]/Tr[e*ZﬁiQf]

13



Charge covariance

(Q,Qk) [ ZBQ'QQk]/Tr[ ZB;Q;]

Insertion of identity is factorized
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Charge covariance

(Q,Qk) [ ZBQ'QQk]/Tr[ ZB;Q;]

Insertion of identity is factorized
(06, ., 0719 Qx0T ..., O ) = (O, ..., 01|67, ..., 6%) Zr,qj(t? ) Zr,qk(ﬁ )

The covariance is given by a sum over trees with two leaves

1220 »—< - [ Lrn- 116 O ©)d @)
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Higher cumulants

The nt" cumulants is given by the sum over all trees with a root that
carries p’ and n leaves carrying the n conserved charges
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Higher cumulants
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These trees are simple to generate
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Higher cumulants

The nt" cumulants is given by the sum over all trees with a root that
carries p’ and n leaves carrying the n conserved charges

|

)
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r>1

X

Physical interpretation: virtual particles with anomalous correction to
the bare charges

V1 (0) =9 (6) - 6(0) = [ TR, 0)F () (n)
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Cumulants of total transport
currents




Comparison with diagrams

Simple modifications of the diagrams:

e Operator at the root: E’ instead of p’

e Sign of the effective velocity at odd internal vertices
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Comparison with diagrams

Simple modifications of the diagrams:

e Operator at the root: E’ instead of p’

e Sign of the effective velocity at odd internal vertices

For instance

q qq q

n o3 [(d0dndC pryag)s0)r(0)1 - F(B)IK™ (6, m)K* (6.C)
0 21 21w 21
°

<f()[1 - F(n)]s(m)f(C)[1 - F(O)]s(Ola” () *[a* ()]

Highly non-trivial matching with the fourth cumulant!
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Conclusion

We develop a new approach to express cumulants of conserved
charges in GGE and total currents in GHD in an intuitive, effective
way

Does this combinatorial structure of individual cumulants translate
into an analytic property of the full counting statistics?

Matrix element of current cumulants? Drude weight?
"Free energy” that generates current cumulants? Dual TBA?

Large scale dynamical correlation functions?
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Thank you for attention!
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