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Critical Six-Vertex Model

• The R matrices and Ř face operators of the critical six-vertex model are

R : C → End(C2 ⊗ C2) : R(u) = P12Ř(u), Ř(u) =











sin(λ−u)
sinλ

0 0 0

0 g sinu
sinλ

0

0 sinu
sinλ

g−1 0

0 0 0 sin(λ−u)
sinλ











where P12 permutes the two copies of C2 and λ ∈ (0, π) is the crossing parameter.

• Choosing the gauge g = z = eiu gives

Řj,j+1(u) =
sin(λ− u)

sinλ
I +

sinu

sinλ
ej

in terms of the generators of the Temperley-Lieb algebra with generators ej

e2j = βej, ejej±1ej = ej, β = 2cosλ

• The commuting single row transfer matrices, for diagonal twisted boundary conditions, are

T (u) = traΘa,a
a
T (u), Θ =

(

ω 0

0 ω−1

)

, ω ∈ C, [T (u),T (v)] = 0

where the monodromy matrix is

a
T (u) = iN Ra1(u+ ζ1)Ra2(u+ ζ2) · · · RaN(u+ ζN)

For periodic boundaries, ω = 1. In this talk, the column inhomogeneities are ζj = 0.
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Baxter’s T -Q Relation

T -Q Relation: Baxter’s famous T -Q relation (Baxter 1972/73) for the six-vertex model is

T (u)Q(u) = f(u)Q(u− λ) + f(u− λ)Q(u+ λ), f(u) =

(

sinu

sinλ

)N
, [T (u),Q(v)] = 0

• T (u) is the commuting family of six-vertex transfer matrices.

• Q(u) is an auxiliary matrix family with eigenvalues Q(u) of the form

Q(u) = Q(u+2π) =
M
∏

m=1

sin(u− um), M ∈ N

• The Bethe roots um are determined by solving the Bethe ansatz equations

sinN(λ−u)

sinN u
= −

M
∏

m=1

sin(u− λ− um)

sin(u+ λ− um)

Q Matrices: The matrix Q(u) (Baxter’s mysterious Q) is not unique:

• On the cylinder, there are two “Bloch wave” solutions Q±(u).

• Other Q matrices satisfying the T -Q relation are given by

Q′(u) = Q(u)Q0(u), [Q0(u),T (u)] = 0, [Q0(u),Q(u)] = 0, Q0(u+ λ) = Q0(u)

At roots of unity, these relate to the freedom of adding/removing complete p′-strings in Q(u).

• Baxter constructed two Q matrices: Qp,p′(u) in 1972 for roots of unity and arbitrary N
and Qλ(u) in 1973 for generic λ with N even. But these do not agree

lim
λ→λp,p

Qλ(u) 6= Qp,p′(u), N even
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Fusion Hierarchy

• The fusion hierarchy equations are

T n
0T

1
n = fnT

n−1
0 + fn−1T

n+1
0

T 1
0T

n
1 = f−1T

n−1
2 + f0T

n+1
0

n ∈ Z

T n
k = T n(u+kλ), fk = f(u+kλ), T−1(u) = 0, T 0(u) = f(u−λ)I

T n
0 := −T−n−2

n+1 , n < 0, T n(u+π) = (−)NT n(u)

• For n ≥ 0, these recursively define the fused transfer matrices T n(u) as polynomials in the

fundamental transfer matrix T (u) = T 1(u).

• Pronko (2000) applied a shift of −nλ in the fusion hierarchy to obtain

T 1(u)T n(u−nλ) = f(u)T n−1(u−nλ) + f(u−λ)T n+1(u−nλ)

= f(u)T n−1(u−λ−(n−1)λ) + f(u−λ)T n+1(u+λ−(n+1)λ)

which takes the form of a “generalized T -Q relation”

T (u)Qn(u) = f(u)Qn−1(u−λ) + f(u−λ)Qn+1(u+λ), Qn(u) = T n(u−nλ)

• Taking an infinite fusion limit and assuming existence, Yang-Nepomechie-Zhang (2006)

“formally regained” a T -Q relation for generic λ from Pronko’s generalized T -Q relation

T (u)Q(u) = f(u)Q(u−λ) + f(u−λ)Q(u+λ), Q(u) = lim
n→∞

T n(u−nλ)

• To make sense of an infinite fusion limit, we restrict to roots of unity λ = (p′−p)π
p′

.
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Extended Q Matrices

• At roots of unity λ = (p′−p)π
p′

, the fused transfer matrices T n(u) admit the closure

T p′(u) = T p′−2(u+ λ) + 2σJ T 0(u), σ = i−N(p′−p) (BLZ94,KSS98)

where the diagonal matrix J is given in terms of the twist ω ∈ C by

J =
1

2
(ωp′i−2pSz

+ ω−p′i2pS
z
), [T n(u),J] = 0

The diagonal matrix Sz is the spin-12 magnetization with eigenvalues Sz ∈ 1
2Z.

• The fused transfer matrices with n = yp′ + j > p′ satisfy the generalized closure relations

T yp′+j(u) = σyUy(J)T j(u) + σy−1Uy−1(J)T p′−2−j(u+(j+1)λ), y ∈ Z, j = 0,1, . . . , p′−1

where Uk(x) is the k-th Chebyshev polynomial of the second kind. We write

J = cosΛ =
1

2

(

eiΛ + e−iΛ
)

, eiΛ = ωp′i−2pSz

• For ω = 1 and pSz ∈ Z, the infinite fusion limits n → ±∞ of the eigenvalues Tn(u) exist

provided the limit is taken through suitable subsequences. Explicitly, setting n = yp′ + j

lim
y→±∞

T yp′+j(u)

σy−1Uy−1(J)
=







Qj,±(u), |eiΛ| > 1 or eiΛ = ±1

Qj,∓(u), |eiΛ| < 1

where Qj,±(u) are the eigenvalues of the fundamental objects we call extended Q matrices

Qj,±(u) = σ e±iΛ T j(u) + T p′−j−2(u+ (j+1)λ), j = 0,1, . . . , p′ − 1
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Extended T -Q Relations

• For twisted boundary conditions ω 6= 1, let us forget about convergence and work directly

with the extended Q matrices Qj,±(u). These satisfy the periodicity and conjugacy properties

Qp′+j,±(u) = σ e±iΛQj,±(u), Qj,±(u+ π) = (−1)NQj,±(u)

Qp′−j−2,±(u) = σ e±iΛQj,∓(u− (j+1)λ)

• Remarkably, the extended Q matrices satisfy the bilinear factorization identities

Qj,+(u)Qj,−(u) = T p′−1(u)T p′−1(u+(j+1)λ), j ∈ Z

Indeed, after a shift of −jλ, the bilinear factorization identities take the explicit form

(

σeiΛT j(u−jλ) + T p′−j−2(u+λ)
)(

σe−iΛT j(u−jλ) + T p′−j−2(u+λ)
)

= T p′−1(u−jλ)T p′−1(u+λ)

This identity is the case k = p′−j−1 of the two-index extended T -system of bilinear identities

T
j+k
−j T

p′−1
1 = T

j
−jT

p′−1−k
k+1 +2σJ T

j
−jT

k−1
1 + T k−1

1 T
p′−2−j
1 , j, k ∈ Z

• Using the fusion hierarchy, we separately obtain the set of extended T -Q relations

T (u)Qj,±(u− jλ) = f(u)Qj−1,±(u− jλ) + f(u− λ)Qj+1,±(u− jλ)

T (u)Qj,±(u+ λ) = f(u− λ)Qj−1,±(u+2λ) + f(u)Qj+1,±(u)

The extended Q matrices Qj,±(u) are no longer auxiliary quantities! They are defined as

polynomials in T (u) through the T -system.
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Bethe Roots

• The Bethe roots appear as the zeros of T p′−1(u+ λ) or equivalently Qp′−1,±(u+ λ)!

Here we used Qp′−1,±(u) = σ e±iΛT p′−1(u).

• Let {vk} be the set of zeros of T p′−1(u + λ) in a periodicty strip. Likewise let {w
j,±
ℓ } be

the sets of zeros of Qj,±(u− jλ). The bilinear factorization identities then imply that

∏

k

sin(u− vk) sin
(

u− (j+1)λ− vk
)

=
∏

ℓ

sin
(

u− w
j,+
ℓ

)

sin
(

u− w
j,−
ℓ

)

For generic ω with eiΛ 6= ±1, we observe that the zeros are all simple and that there are no

complete p′-strings. In contrast, at eiΛ = ±1, complete p′ strings can and do occur.

• In the generic case, each zero u = um of the above product belongs to {vk} or {vk+(j+1)λ},

and likewise belongs to {w
j,+
ℓ } or {w

j,−
ℓ }. Let us partition the zeros {vk}

E± = Ej,± = {vk} ∩ {w
j,±
ℓ }, j = 0, . . . , p′−2, E+ ∪ E− = {vk}

Crucially, we observe that Ej,± do not depend on j. This implies that the division of the

zeros of T p′−1(u+ λ) between Qj,+(u− jλ) and Qj,−(u− jλ) is identical for all j.

• The cardinalities of the sets E± are |E±| = N
2 ∓ Sz. Defining

Q+(u) =
∏

um∈E+

sin(u− um), Q−(u) =
∏

um∈E−

sin(u− um)

it is readily verified numerically that um ∈ E± are the Bethe roots.
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Baxter’s T -Q Eigenvalue Relations

• The extended T -Q eigenvalue relations imply the usual Baxter T -Q eigenvalue relation.

• Using conjugacy to divide the factors, we find the BLZ1996 eigenvalue decompositions

Qj,+(u− jλ) = Rj,+(u)Q+(u)Q−(u− (j+1)λ)

Qj,−(u− jλ) = Rj,−(u)Q−(u)Q+(u− (j+1)λ)

T p′−1(u+ λ) = φ(u)Q+(u)Q−(u)

T p′−1(u− jλ) = φ(u)Q+(u− (j+1)λ)Q−(u− (j+1)λ)

• In the generic case, Rj,±(u) and φ(u) are constants satisfying Rj,+(u)Rj,−(u) = φ(u)2.

Their calculation yields

Rj+1,±(u)

Rj,±(u)
= ω̃±1, ω̃ = ω e−iπSz

• The extended T -Q and Baxter T -Q relations now take the equivalent scalar forms

T(u)Qj,±(u− jλ) = f(u)Qj−1,±(u− jλ) + f(u− λ)Qj+1,±(u− jλ)

T(u)Q±(u) = ω̃∓1f(u)Q±(u− λ) + ω̃±1f(u− λ)Q±(u+ λ)

The second form follows using the BLZ decompositions and dividing by Rj,±(u)Q∓(u−(j+1)λ).

Strikingly, the dependence on j magically disappears!

• Substituting u = um, we recover the Bethe ansatz equations for periodic twisted boundary

conditions on the cylinder. The presence of the factors e±iπSz
in the T -Q relation, which are

absent in Baxter’s T -Q equation are due to our choice of gauge in the R-matrix.
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Non-Generic Case: Complete p′ Strings

• Consider a sector with magnetization Sz = m and twist such that eiΛ = ±1, for example,

Sz = 0 and ω = 1. In such cases, the bilinear factorization identity for eigenvalues is

[

σ T j(u− jλ)∓ T p′−j−2(u+ λ)
]2

= T p′−1(u− jλ)T p′−1(u+ λ)

• All the zeros of the left side are double, so the same must hold for the right side.

Numerically, we see each of these zeros is twice degenerate and never more. The zeros

of T p′−1(u+ λ) can either be single or double.

• If u = u0 is a single zero of T p′−1(u+λ), the double zero of the left is evenly split between

the two factors of the right side, implying that T p′−1(u0 − jλ) = 0. This holds true for j ∈ Z,

so that T p′−1(u+ λ) = 0 for u = u0, u0 + λ, . . . , u0 + (p′ − 1)λ. The zeros of T p′−1(u+ λ) are

therefore either double zeros or single zeros forming complete p′-strings.

• In the BLZ decompositions, the zeros of the complete p′-strings are encoded in the

functions Rj,±(u) and φ(u), which in this case are not constants. Instead, φ(u) = φ(u+λ) and

the sets E+ and E− are equal, implying that Q+(u) = Q−(u) = Q(u), Q+(u)Q−(u) = Q(u)2

and Rj,+(u) = Rj,−(u) = Rj(u). This last function satisfies Rj(u)2 = φ(u)2 and therefore

Rj(u) = Rj(u+ λ).

• The occurrence of complete p′ strings is thus properly accounted for and they occur at

fixed not arbitrary positions.
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Logarithmic Minimal Models on the Strip

• The elementary face operator for the dense loop model is defined as

u =
sin(λ−u)

sinλ
+

sinu

sinλ

where u is the spectral parameter, λ is the crossing parameter and β = 2cosλ is the fugacity

of closed loops in the bulk.

• For Kac vacuum boundary conditions, the 1 × n fused transfer tangle is defined

diagrammatically by

Dn(u) =
(1,n)

(n,1)

(1,n)

(n,1)

(1,n)

(n,1)

. . .

. . .

. . .

. . .

u−ζ1

un−1−ζ1

u−ζ2

un−1−ζ2

u−ζN

un−1−ζN

• The transfer matrices act on a vector space Vd
N of link states: dimVd

N =

(

N
N−d
2

)

−

(

N
N−d−2

2

)

Vd=2
N=6 =

{

, , , , ,

, , ,

}

The (defect preserving) action of the TL algebra on the strip is

= , = β , = 0
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Fusion Hierarchies on the Strip

• The double-row transfer matrices Dn(u) with Kac vacuum boundary conditions satisfy the

fusion hierarchy relations

sn−2s2n−1D
n
0D

1
n = sn−3s2nfnD

n−1
0 + sn−1s2n−2fn−1D

n+1
0

sns−1D
1
0D

n
1 = sn+1s−2f−1D

n−1
2 + sn−1s0f0D

n+1
0

n ∈ Z

where Dn
k = Dn(u+kλ), fk = f(u+kλ), ζi are bulk inhomogeneities, Dn(u+π) = D(u) and

D−1
0 = 0, D0

0 = f(u− λ)I, f(u) =
N
∏

i=1

sin(u+ζi) sin(u−ζi)

sin2 λ
, sk =

sin(2u+kλ)

sinλ

• The extra sk functions appearing in the fusion hierarchy are order 1 boundary terms.

The definition of Dn
0 is extended to n ≤ −2 by the convention

Dn
0 := −D−2−n

n+1 n ≤ −2

• Applying a shift of −nλ gives

s−n−2s−1D
1
0D

n
−n = s−n−3s0f0D

n−1
−n + s−n−1s−2f−1D

n+1
−n

Setting Qn(u) = s−n−2D
n(u−nλ) gives the generalized T -Q relation

s−1D
1(u)Qn(u) = s0f(u)Q

n−1(u−λ) + s−2f(u−λ)Qn+1(u+λ), [D(u),Qj(u)] = 0

• As observed in YNZ2006, this would lead to a T -Q equation if the limit limn→∞Qn(u)

exists. But again, the existence of this simple limit is problematic.
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Closure and Extended Q Matrices

• For λ = (p′−p)π
p′

, the fused transfer matrices satisfy the simple closure relation

D
p′

0 = 2σD0
0 +D

p′−2
1 , σ = (−1)p

′−p

Setting n = yp′ + j, this closure relation generalizes to the higher fused transfer matrices

D
yp′+j
0 = σy(y+1)D

j
0 + σy−1yD

p′−2−j
j+1 , y ∈ Z, j = 0,1, . . . , p′ − 1

• Taking the limit n → ∞ of Dn(u) through subsequences with j finite gives

lim
y→∞

Dyp′+j(u)

yσy−1
= Qj(u)

where the extended Q matrices are given as the linear combinations

Qj(u) = σDj(u) +Dp′−j−2(u+(j+1)λ), j ∈ Z

• In contrast to the cylinder case, the infinite fusion limit taken through subsequences always

exists on the strip. Moreover, the same extended Q matrices are obtained by taking y → −∞.

• The extended Q matrices Qj(u) satisfy the periodicity and conjugacy properties

Qj(u+ π) = σQj(u), Qp′+j(u) = σQj(u), Qp′−j−2(u) = σQj(u− (j+1)λ)
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Extended T -Q Relations

• The extended Q matrices also satisfy the bilinear factorization identities

(

sj−2Q
j(u)

)2
= s−3s2j−1D

p′−1(u)Dp′−1(u+(j+1)λ), j ∈ Z

Indeed, after a shift of −jλ, this reads

(s−j−2)
2
(

σD
j
−j +D

p′−j−2
1

)2
= s−2j−3s−1D

p′−1
−j D

p′−1
1

This is the special case k = p′−1−j of the two-index extended T -system of bilinear identities

D
j+k
−j D

p′−1
1 =

sk−1s−2−j

sk−j−2s−1

(

D
j
−jD

p′−1−k
k+1 +2σD

j
−jD

k−1
1 +Dk−1

1 D
p′−2−j
1

)

, j, k ∈ Z

These identities are proved using the fusion hierarchy and induction.

• Separately, from the fusion hierarchy, we obtain the extended T -Q relations

s−j−2s−1D(u)Qj(u−jλ) = s−j−3s0f(u)Q
j−1(u−jλ) + s−j−1s−2f(u− λ)Qj+1(u−jλ)

sjs−1D(u)Qj(u+λ) = sj+1s−2f(u−λ)Qj−1(u+2λ) + sj−1s0f(u)Q
j+1(u)

For example, setting Q
j
k = Qj(u+kλ), expanding the left side of the first relation and using

the fusion hierarchy gives

s−j−2s−1D
1
0Q

j
−j = s−j−2s−1D

1
0

(

σD
j
−j +D

p′−j−2
1

)

= s−j−3s0f0
(

σD
j−1
−j +D

p′−j−1
0

)

+ s−j−1s−2f−1

(

σD
j+1
−j +D

p′−j−3
2

)

= s−j−3s0f0Q
j−1
−j + s−j−1s−2f−1Q

j+1
−j
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Polynomial Reductions

• In the bilinear factorization identity, the transfer matrices Dp′−1(u) and extended Q matrices

Qj(u) have order 1 factors in common. Setting k = −j in the bilinear T -system gives

f−j−1D
p′−1
1 =

s−j−1s−j−2

s−2j−2s−1

(

D
j
−jD

p′−1+j
−j+1 +2σD

j
−jD

−j−1
1 +D

−j−1
1 D

p′−2−j
1

)

For j = −1 and j = 0, the trigonometric prefactor on the right side equals 1. For the other

values of j, this prefactor is not 1. This implies that the transfer matrix D
p′−1
1 vanishes if

∏p′−2
i=0 si = 0. We therefore have the factorization

D
p′−1
0 =

( p′−2
∏

i=0

si−2

)

D̂
p′−1
0

where the matrix entries of the reduced transfer matrix D̂
p′−1
0 are Laurent polynomials in eiu.

• The bilinear factorization identities thus simplifies to

(

sj−2Q
j
0

)2
=

( p′
∏

i=1

s2i

)

D̂
p′−1
0 D̂

p′−1
j+1 , Q

j
0 =

( p′
∏

i=1
i 6=j−2

si

)

Q̂
j
0

where Q
j
0 now factorizes and the reduced Q matrices Q̂

j
0 are also Laurent polynomials in eiu.

After applying a shift of −jλ, the bilinear factorization identities take the reduced form

(Q̂
j
−j)

2 = D̂
p′−1
−j D̂

p′−1
1
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Decomposition of Eigenvalues Q̂j(u−jλ)

• The reduced bilinear factorization identity is satisfied eigenvalue by eigenvalue and the left

side is a perfect square. Suppose the eigenvalues Dp′−1(u) and Qp′−1(u) are both nonzero.

Then it follows that D̂p′−1(u+λ) can have double zeros as well as single zeros organized

into complete p′-strings. For a given eigenstate, we denote by Ej the set of zeros common

to Q̂j(u−jλ) and D̂p′−1(u+λ), excluding the complete p′ strings. As before, we find that

Ej = Ej+1 = E and define

Q(u) =
∏

um∈E

sin(u− um)

• It follows that

D̂p′−1(u+λ) = φ(u)Q(u)2, D̂p′−1(u−jλ) = φ(u)Q(u−(j+1)λ)2

where φ(u) = φ(u+λ) encodes the zeros of the complete p′-strings. The bilinear factorization

identities then become

Q̂j(u−jλ)2 =
(

φ(u)Q(u)Q(u−(j+1)λ)
)2

• Taking the square root yields the decomposition

Q̂j(u−jλ) = Rjφ(u)Q(u)Q(u−(j+1)λ)

where the Rj are constants satisfying (Rj)2 = 1.
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Baxter T -Q Relations

• The ratios Rj+1/Rj are obtained by comparing the coefficient of the maximal term in

z = eiu. In this case, because the coefficient of z2(N−p′−1) in each Q̂j(u−jλ) vanishes, one

has to compare the coefficients of the next leading term. In all cases, we find

Rj+1

Rj
= 1

• Finally, we rewrite the scalar extended T -Q relation in terms of Q̂j(u) and then Q(u).

Dividing this equation throughout by Rjφ(u)Q(u−(j+1)λ)
∏p′

i=1 si gives Baxter’s T -Q relation

s−1D(u)Q(u) = s0f(u)Q(u−λ) + s−2f(u− λ)Q(u+λ)

• Assuming the zeros appear in pairs under crossing, we set

Q(u) =
2M
∏

m=1

sin(u−um)

Substituting this into Baxter’s T -Q relation and setting u = um, so that the left side vanishes,

then gives the Bethe ansatz equations. Using the crossing symmetry, these agree with

AlcarazEtAl87, Sklyanin1988, Nepomechie2002.
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T - and Y -Systems

• The periodic 6-vertex and loop transfer matrices satisfy the usual T - and Y -systems

(KlümperP92,M-DuchesnePRasm2014)

T n
0T

n
1 = f−1fnI + T n+1

0 T n−1
1 , n ≥ 0

tn0t
n
1 = (I + tn−1

1 )(I + tn+1
0 ), n = 1,2, . . . , p′−2

tn0 =
T n−1
1 T n+1

0

f−1fn

• At roots of unity, the closure relations are (BLZ97,KSS98,M-DuchesneKlümperP2017)

I + t
p′−1
0 = (I + eiΛK0)(I + e−iΛK0), K0K1 = 1+ t

p′−2
1

K0 =
iN(p′−p)

f−1
T
p′−2
1 , J = cosΛ = Tp′(

1
2T (i∞)) = Chebyshev polynomial of first kind

• The D-type TBA Dynkin diagram (with endpoint nodes distinguished by factors e±iΛ) is

Dp′ :
1 2 . . . p′−2

p′−1

p′

+

−

• The same relations hold for boundary cases for double row transfer matrices with Λ = 0.

• In principle, the CFT spectra of all of these roots-of-unity models can be obtained by

solving the D-type TBA non-linear integral equations.
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Summary

• The rational points λ
π ∈ Q are dense on the six-vertex critical line λ

π ∈ (0,1).

• At each rational point, the six-vertex model exhibits a higher loop algebra symmetry

and is a distinct logarithmic theory. The higher symmetry is reflected in higher eigenvalue

degeneracies and the extended T -systems of bilinear identities. The logarithmic nature is

manifest in the appearance of nontrivial Jordan cells as studied by Gainutdinov-Nepomechie

2016. Indeed, λ = π
2 is dimers (PAP-VittoriniOrgeas 2017, PAP-VO-Rasmussen 2019).

• At roots of unity, the T -system closes and the six-vertex model satisfies extended T -Q

relations. The extended Q matrices Qj,±(u) are not auxiliary. They are uniquely defined and

unambiguously identified as explicit linear combinations of standard fused transfer matrices

T j(u) with locally defined Boltzmann face weights. The occurrence of complete p′ strings in

the eigenvalues is properly accounted for and there is no arbitrariness in their positions.

• The usual Baxter T -Q relations for eigenvalues are deduced from the extended T -Q

relations. The analyticity/zeros of the Q matrices and Bethe roots are directly accessible

numerically for modest finite sizes.

• The extended methods are systematic and general. On the strip, the methods apply to

the six-vertex model with non-diagonal boundary conditions on the left and right (6 arbitrary

boundary parameters) extending the results of Murgan-Nepomechie-Shi 2006 (p = 1, p′ ≥ 2)

to all roots of unity. They also apply to the logarithmic minimal models LM(p, p′) on the

cylinder and on the strip with Robin vacuum boundary conditions.

• For critical bond percolation LM(2,3) on the strip with s-type boundary conditions,

the new methods allow (M-DuchesneKlümperP2017) the patterns of zeros of Q(u) to be

completely classified in terms of q-binomials and skew q-binomials.

• Extended T -Q relations can be taken as the starting point to systematically derive NLIE.
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