Recent theory developments in QCD spin

Yoshitaka Hatta Brookhaven National Laboratory

Longitudinal spin

The proton spin problem

The proton has spin ½.

The proton is not an elementary particle.

Gauge invariant completion of JM decomposition

Chen, Lu, Sun, Wang, Goldman (2008) YH (2011)

$$\begin{split} \langle PS|\epsilon^{ij}F^{i+}A^{j}_{phys}|PS\rangle &= 2S^{+}\Delta G\\ \lim_{\Delta \to 0} \langle P'S|\bar{\psi}\gamma^{+}i\overleftrightarrow{D}^{i}_{pure}\psi|PS\rangle &= iS^{+}\epsilon^{ij}\Delta_{\perp j}L^{q}_{can}\\ \lim_{\Delta \to 0} \langle P'S|F^{+\alpha}\overleftarrow{D}^{i}_{pure}A^{phys}_{\alpha}|PS\rangle &= -i\epsilon^{ij}\Delta_{\perp j}S^{+}L^{g}_{can} \end{split}$$

where
$$A^{\mu}_{phys}(x) = \frac{1}{D^+}F^{+\mu} = \int_{x^-}^{\infty} dz^- W[x^-, z^-]F^{+\mu}(z^-, x_{\perp})$$
 (my choice)

$$D^{\mu}_{pure} = D^{\mu} - iA^{\mu}_{phys}$$

Polarized PDF global analysis

Recent determinations of polarised PDFs

	DSSV	NNPDF	JAM
DIS	\checkmark	\checkmark	\checkmark
SIDIS	\checkmark	\boxtimes	\checkmark
pp	\checkmark (jets, π^0)	\checkmark (jets, W^{\pm})	\boxtimes
statistical treatment	Lagr. mult. $\Delta\chi^2/\chi^2=2\%$ Monte Carlo	Monte Carlo	Monte Carlo
parametrization	polynomial (23 pars)	neural network (259 pars)	polynomial (10 pars)
features	global fit	minimally biased fit	large- <i>x</i> effects
latest updates	DSSV08 PRD 80 (2009) 034030 DSSV14 PRL 113 (2014) 012001	NNPDFpol1.0 NPB 874 (2013) 36 NNPDFpol1.1 NPB 887 (2014) 276	JAM15 PRD 93 (2016) 074005 JAM17 PRL 119 (2017) 132001

Talk by E. Nocera at Tianjin Workshop last week

Evidence of nonzero ΔG

$$\int_{0.05}^{1} dx \Delta g(x, Q^2 = 10 \text{GeV}^2) = 0.20^{+.06} \text{DSSV}^{++}$$

$$\int_{0.2}^{0.05} dx \Delta g(x, Q^2 = 10 \text{GeV}^2) = 0.17^{+-0.06} \text{NNPDFpol}_{1.1}$$

$$\int_{0.05}^{0.05} dx \Delta g(x, Q^2 = 1 \text{GeV}^2) = 0.5^{+-0.4} \text{JAM15}$$

HUGE uncertainty from the small-x region

→ RHIC 510GeV, Electron-Ion Collider

Helicity evolution to higher order

De Florian and Vogelsang (2019)

Helicity distributions from lattice QCD

The QCD Wigner distribution

Phase space distribution of partons in QCD—the `mother distribution'

xp

OAM from the Wigner distribution

Lorce, Pasquini (2011); YH (2011); Lorce, Pasquini, Xiong, Yuan (2011)

$$L^{q} = \int dx \int d^{2}b_{\perp} d^{2}k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_{z} W^{q}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Jaffe-Manohar OAM from staple Wilson line YH (2011)

Ji, Xiong, Yuan (2012) 10

Jaffe-Manohar vs. Ji: First lattice result

Engelhardt (2017)

The difference: Potential OAM

PDF of OAM

Define the x-distribution $L_{can} = \int dx L_{can}(x)$.

Hagler, Schafer (1998) Harindranath, Kundu (1999)

PDF of OAM

Define the x-distribution $L_{can} = \int dx L_{can}(x)$.

Hagler, Schafer (1998) Harindranath, Kundu (1999)

$$L^{q}_{can} = \int dx \int d^{2}b_{\perp} d^{2}k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_{z} W^{q}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$
 YH, Yoshida (2012)

Wandzura-Wilczek part

$$= x \int_{x}^{\epsilon(x)} \frac{dx'}{x'} (H_q(x') + E_q(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^2} \tilde{H}_q(x') - x \int_{x}^{\epsilon(x)} dx_1 \int_{-1}^{1} dx_2 \Phi_F(x_1, x_2) \mathcal{P} \frac{3x_1 - x_2}{x_1^2(x_1 - x_2)^2} - x \int_{x}^{\epsilon(x)} dx_1 \int_{-1}^{1} dx_2 \tilde{\Phi}_F(x_1, x_2) \mathcal{P} \frac{1}{x_1^2(x_1 - x_2)}.$$

genuine twist-three part

QCD evolution of OAM distributions $L_{q,g}(x)$

WW part \rightarrow the same as twist-2 PDFs. Known to 3 loops.

Genuine twist-3 part \rightarrow Same as the evolution of Efremov-Teryaev-Qiu-Sterman function

Spin at small-x?

All-order resummation of small-x double logarithms $(\alpha_s \ln^2 1/x)^n$ via InfraRed Evolution Equation Kirshner, Lipatov (1983)

$$\Delta q(x) \sim \Delta g(x) \sim \left(\frac{1}{x}\right)^{3.45\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

Bartels, Ermolaev, Ryskin (1996),

Disagree

All-order resummation based on the polarized dipole operator in the Wilson line approach to small-x

$$\Delta q(x) \sim \left(\frac{1}{x}\right)^{2.31\sqrt{\frac{\alpha_s N_c}{2\pi}}} \qquad \Delta g(x) \sim \left(\frac{1}{x}\right)^{1.88\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

Kovchegov, Pitonyak, Sievert (2015~)

OAM at small-x

Suppose a quark emits a very soft gluon. Quark helicity unchanged.

From angular momentum conservation, gluon spin and OAM have to cancel.

All-order result from the equation of motion and double log resummation

$$L_g(x) \approx -\frac{2}{1+\alpha} \Delta G(x) \sim \frac{1}{x^{\alpha}}$$

Boussarie, YH, Yuan (2019)

lpha from Bertels, Ermolaev, Ryskin

 $\overline{\mathcal{QQQQQQQ}} x \ll \overline{$

Measuring OAM at EIC

Ji, Yuan, Zhao (2016) YH, Nakagawa, Xiao, Yuan, Zhao (2016) Bhattacharya, Metz, Zhou (2017)

Exploit the connection between OAM and the Wigner distribution

$$L^{q,g} = \int dx \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Longitudinal single spin asymmetry in diffractive dijet production

Need more work, more new ideas!

Transverse spin

Transversity global analysis

kt factorization: Sivers, Collins

Collinear twist-3 factorization: ETQS, twist-3 fragmentation

Fitting the pp data with twist-3 fragmentations

(b)

RHIC pp data can be well described by assuming that SSA is dominated by genuine twist-3 fragmentations.

 $E_{h}\frac{d\sigma^{frag}}{d^{3}P_{h}} = 4M\alpha_{s}^{2}\int \frac{dz}{z^{3}}h_{1}(x)\epsilon^{ij}S_{Ti}P_{hj}\frac{xz^{6}}{(P_{hT}^{2})^{3}}\int dx'G(x')$ $\times \left\{-\operatorname{Im}\tilde{e}(z) + \int \frac{dz_{1}}{z_{1}^{2}}\frac{1}{\frac{1}{z} - \frac{1}{z_{1}}}\frac{\operatorname{Im}\hat{E}_{F}(z_{1}, z)}{N_{c}^{2} - 1}\left(N_{c}^{2} + \frac{1}{z_{1}\left(\frac{1}{z} - \frac{1}{z_{1}}\right)}\right)\right\}$

 P, S_{\perp}

(a)

Kanazawa, Koike, Metz, Pitonyak (2014) Gamberg, Kang, Pitonyak, Prokudin (2017)

Towards spin asymmetries at NLO

No all-order proof of factorization of SSAs in collinear twist-3 framework. Check of factorization at NLO for a few observables.

• Pt weighted asymmetries in Drell-Yan and SIDIS

Vogelsang, Yuan; Chen, Ma, Zhang; Kang, Vitev, Xing; Yoshida

• Polarized hyperon production in e+e-

Gamberg, Kang, Pitonyak, Schlegel, Yoshida

A yet another mechanism of SSA

Benic, YH, Li, Yang, to appear

SSA of purely perturbative origin, first appears at two-loops Suppressed by α_s compared to the known twist-three contributions but $g_T(x)$ contains the Wandzura-Wilczek part.

SSA in pA

In the forward region $x_F \sim 1$, small-x effects of the nucleus are important

$$x = \frac{p_T^2}{szx_F} \ll 1$$

Study the A-dependence of A_N . Different contributions have different A-dependences

$$A_N \sim A^{-1/3}$$
 or $A_N \sim A^0$

Data from RHIC available. Tension between STAR and PHENIX data? Boer, Dumitru, Hayashigaki Kang, Yuan Schaefer, Zhou YH, Xiao, Yuan, Yoshida

Gluon Sivers function

$$\frac{1}{xP^{+}} \int \frac{dz^{-}d^{2}z_{\perp}}{(2\pi)^{3}} e^{-ixP^{+}z^{-}+ik_{\perp}\cdot z_{\perp}} \langle PS_{\perp} | 2\text{Tr}[F^{+i}(z^{-},z_{\perp})U^{[\pm]}F^{+i}(0)U^{[\pm]}] | PS_{\perp} \rangle$$
$$= f_{1}^{[\pm\pm]}(x,k_{\perp}^{2}) - \frac{k_{\perp} \times S_{\perp}}{M} f_{1T}^{\perp[\pm\pm]}(x,k_{\perp}^{2}) ,$$

Related to C-odd, three-gluon collinear correlation function Beppu, Koike, Tanaka, Yoshida (2010)

Expected to be dominant in SSA of high-mass states, SSA in the backward region Interesting physics cases at EIC Zheng, Aschenauer, Lee, Xiao, Yin (2018)

Related to the odderon exchange at small-x Zhou (2014)

Summary

• Longitudinal

Uncertainties in gluon helicity distribution at small-x.

- \rightarrow EIC
- \rightarrow lattice, resummation

OAM : Definition, evolution OK. Phenomenology missing!

Transverse

Transversity global analysis

Many topics in SSA : Sign change, NLO, pA, gluon Sivers,