Revealing the nucleon's spin structure using inclusive electron scattering at Jefferson Lab

Jefferson Lab, Newport News, VA

Mark K Jones, Jefferson Lab

August 27, 2019 PacificSpin2019

12 GeV linear Electron accelerator

Hall A

Hall B

Hall C

Office of Science

Revealing the nucleon's spin structure using inclusive electron scattering at Jefferson Lab

- Newly published results from 6 GeV experiments
 - Proton and neutron g_2 and d_2 .
 - Test of chiral perturbation theory at low Q²
- Upcoming 12 GeV experiments
 - In Hall B measure parallel beam-target spin asymmetry with polarized proton and deuteron (polarized ammonia targets)
 - Extract x-dependence of proton A_1 as x goes to 1.
 - Measure Q^2 dependence of g_1/F_1 in x-bins.
 - In Hall C measure parallel and perpendicular beam-target spin asymmetry with polarized neutron (polarized 3He target)
 - Extract x-dependence of neutron A₁ as x goes to 1.
 - Measure broad range of x at near $Q^2 = 3,4,5$ and 6 to extract d_2

Mark K Jones, Jefferson Lab

August 27, 2019 PacificSpin2019

Science

12 GeV era has started at Jlab

<u>6 GeV Experimental equipment</u>

- Beam polarization at 85% with beam currents of 80-200 uA.
- Polarized proton (70-90%) and neutron targets (50%)
- Hall A had high luminosity, small acceptance spectrometers (HRS) and moderate acceptance spectrometer (BigBite).
- Hall B had moderate luminosity and large acceptance spectrometer (CLAS) detector
- Hall C had had high luminosity, small acceptance spectrometer(HMS) and moderate acceptance non-magnetic detector (BETA).

12 GeV Experimental equipment

- Beam polarization at 85% with beam currents of 80uA.
- Polarized proton (70-90%) and neutron targets (improved polarization to 60%)
- New Large acceptance detector (CLAS12) in Hall B.
- New moderate acceptance spectrometer (SBS) in Hall A.
 - Proposed large acceptance solenoid magnet, SoLID.
- New high momentum spectrometer (SHMS) in Hall C.
- New Hall D with 4pi acceptance GLUEX detector PacificSpin2019 3

Polarized Deep Inelastic Scattering

Jefferson Lab

PacificSpin2019

Spin Asymmetries and structure functions

Extract photon-nucleon asymmetries A_1 and A_2 from measured A_{\parallel} and A_{\perp}

 $A_{\parallel} = D (A_1 + \eta A_2)$ $A_{\perp} = d(A_2 - \xi A_1)$

 η, d, ξ, D are kinematic functions D also depends on RExtract spin structure functions, g_1 and g_2

$$A_{1} = \frac{g_{1} - \gamma^{2}g_{2}}{F_{1}} \qquad A_{2} = \gamma \left[\frac{g_{1} + g_{2}}{F_{1}}\right] \qquad \gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}}$$

Ideally measure both A_{\parallel} and A_{\perp} , but some only measure A_{\parallel}

$$\frac{A_{\parallel}}{D} = (1 + \gamma^2) \left[\frac{g_1}{F_1} \right] + (\eta - \gamma) A_2 \qquad |A_2| \le \sqrt{R (1 + A_1)/2}$$

$$A_1 \approx \frac{A_{\parallel}}{D} \approx (1+\gamma^2) \left[\frac{g_1}{F_1} \right]$$

Partonic picture of nucleon (Longitudinal picture)

No simple interpretation of g_2

Need to understand the transverse structure of nucleon

Measurement of g₂: Access to Higher twist

Twist-2 and Twist-3 contribute at leading order to g₂

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$

Twist-2 Wandura-Wilczek relation
$$g_2^{WW}(x,Q^2) = -g_1^{LT}(x,Q^2) + \int_r^1 g_1^{LT}(y,Q^2) dy/y$$

00000

ξ the quark-gluon correlation function

 h_T denotes the transversity distribution

Dynamical twist-3 d₂

Cornwall-Norton moments of g_1 and g_2 connected by OPE to twist-2 a_n and twist-3 d_n matrix elements

$$\Gamma_{1}^{(n)} = \int_{0}^{1} x^{n} g_{1}(x, Q^{2}) dx = \frac{1}{2} a_{n} + O(M^{2}/Q^{2})$$

$$\Gamma_{2}^{(n)} = \int_{0}^{1} x^{n} g_{2}(x, Q^{2}) dx = \frac{n}{2(n+1)} (d_{n} - a_{n}) + O(M^{2}/Q^{2})$$

At lower Q², Nachtmann moments are needed to obtain clean dynamic twist-3 matrix elements (no target mass corrections to order M^8/Q^8)

$$d_{2}(Q^{2}) = \int_{0}^{1} dx \,\xi^{2} \left(2 \frac{\xi}{x} g_{1} + 3 \left(1 - \frac{\xi^{2} M^{2}}{2 Q^{2}} \right) g_{2} \right) \Rightarrow_{Q^{2} \to \infty} \int_{0}^{1} dx \, x^{2} \left(2 g_{1} + 3 g_{2} \right)$$

JLab is a perfect place to measure d_2 with the x^2 weight of the integral

Previous proton and neutron d₂ measurements

- At $Q^2 = 5$, SLAC 155x measured proton and neutron d_2 .
- At Q² = 1.3, RSS (Resonance Spin Structure) experiment in Hall C detected electrons in HMS to measured g₁ and g₂ for polarized proton and deuteron. Extract neutron by subtracted proton from deuteron
- At Q² = 2.5, E01-012 experiment in Hall A detected electrons in the HRSs to measured g₁ and g₂ for polarized 3He (neutrons).

PacificSpin2019

JLab Experiments to measure proton and neutron d₂

- Hall C measured proton d₂
- Hall A measured neutron d₂
- Beam energies of 4.7 and 5.9 GeV
- Covered similar x, Q² and W kinematics
- Parallel and perpendicular target polarization directions

Hall C Proton d₂ experiment

- BETA specs
 - Effective solid angle 0.194 sr
 - Energy resolution $10\%/\sqrt{E(\text{GeV})}$
 - 1000:1 pion rejection
 - angular resolution $\sim 1 \text{ mr}$
- Non-magnetic detector
 - detects DIS e and e^+e^- pairs: need to cut on minimum E'
 - Target field helps sweep lowest *E* background (180 MeV/c cutoff)

Hall C Proton d₂ experiment

Spin Asymmetries of the Nucleon Experiment (SANE)

Average target polarization of 68%

Dynamically polarized ammonia target

Previous proton g₁ and g₂ measurements

Recent Hall C SANE g1p and g2p results

Hall A neutron d₂ experiment (E06-014)

- Detected electrons in BigBite and HRSL
- Target polarization parallel and perpendicular
 - Target cell is 40cm long
 - Typical polarization around 50% at 15uA

Polarized 3He target

Coil configuration rotates the polarization direction

Recent Hall A Neutron g₁ and g₂ results

D. Flay et al. Phys. Rev. D 94, 052003 (2016)

Comparison of neutron results to theory

D. Flay et al. Phys. Rev. D 94, 052003 (2016)

Direct comparison of neutron and proton d₂

- Lattice calculations at $Q^2 = 5$ in the quenched approximation (PRD 63, 074506)
 - Proton calculations agree with SLAC data.
 - Neutron calculations disagree with SLAC data.
- New lattice calculations needed.

Upcoming Hall C Measurement of neutron d₂

- Run in Spring 2020
- Detect electrons in the HMS and SHMS

Upcoming Hall C Measurement of neutron d₂

Projected results for E12-06-121

PacificSpin2019

son Lab

Large x dependence of valence quark distributions

At leading order
$$A_1(x,Q^2) = \frac{\sum e_i^2 \Delta q_i(x,Q^2)}{\sum e_i^2 q_i(x,Q^2)}$$

Different models predict different large x behavior for proton and neutron A_1 and for the spin dependent *u* and *d*-quarks

Exact SU(6)
$$A_1^p = \frac{5}{9};$$
 $A_1^n = 0;$ $\frac{d}{u} = \frac{1}{2};$ $\frac{\Delta u}{u} = \frac{2}{3};$ $\frac{\Delta d}{d} = -\frac{1}{3}$ yperfine perturbation of SU(6) $A_1^{n,p} \to 1;$ $\frac{d}{u} \to 0;$ $\frac{\Delta u}{u} \to 1;$ $\frac{\Delta d}{d} \to -\frac{1}{3}.$ pQCD, helicity conservation $A_1^{n,p} \to 1;$ $\frac{d}{u} \to \frac{1}{5};$ $\frac{\Delta u}{u} \to 1;$ $\frac{\Delta d}{d} \to 1.$

PacificSpin2019

H

Proton and Neutron A₁

Proposed measurement of neutron A₁ in Hall C

• Run in Fall 2019

PR12-06-110 J.-P. Chen, G. Cates, Z. E. Meziani and X. Zheng.

Jefferson Lab

Proposed measurement of neutron A_1 in Hall C

New polarized 3He convection cell

Expect 60% polarization at 30uA

PR12-06-110 J.-P. Chen, G. Cates, Z. E. Meziani and X. Zheng.

PacificSpin2019

Large x dependence of proton A₁

Upcoming measurement of parallel asymmetry with polarized proton and deuteron with CLAS12, PR12-06-109 Contact: S. Kuhn

Forward Detector:

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- RICH detector
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter (EC)
- Forward Tagger

Central Detector:

- SOLENOID magnet
- Barrel Silicon Tracker
- Micromegas
- Central ToF system
- Neutron detector
- Backward Angle Neutron detector

PacificSpin2019

Large x dependence of proton A₁

Upcoming measurement of parallel asymmetry with polarized proton and deuteron with CLAS12. PR12-06-109 Contact: S. Kuhn

Longitudinally polarized proton and deuteron using dynamic nuclear polarization (DNP) on ammonia targets.

Large x dependence of proton A₁

Upcoming measurement of parallel asymmetry with polarized proton and deuteron with CLAS12. PR12-06-109 Contact: S. Kuhn

Polarized to Unpolarized Quark ratios

Combined measurements of previous proton and recent Hall A neutron g_1/F_1

D. Flay et al. Phys. Rev. D 94, 052003 (2016)

PacificSpin2019

Extract the down quark valence helicity distribution

The future Hall B measurement of proton and deuteron asymmetries can be combined.

Q^2 dependence of proton g_1/F_1

- New Hall B data on polarized proton and deuteron to extract g_1/F_1 with improved statistical precision compared to earlier Hall B experiments.
- Need precision to distinguish • between power-law higher twist and logarithmic gluon radiation in the polarized parton distribution.
- To give a feel, the plots have pQCD calculations from LSS with $\Delta G > 0$ (blue) and $\Delta G < 0$ (red)

PHYSICAL REVIEW C 90, 025212 (2014

PacificSpin2019

Q^2 dependence of deuteron g_1/F_1

- New Hall B data on polarized proton and deuteron to extract g_1/F_1 with improved statistical precision compared to earlier Hall B experiments.
- Need precision to distinguish • between power-law higher twist and logarithmic gluon radiation in the polarized parton distribution.
- To give a feel, the plots have pQCD calculations from LSS with $\Delta G > 0$ (blue) and $\Delta G < 0$ (red)

PHYSICAL REVIEW C 90, 025212 (2014)

Deuteron

Test of effective theories of QCD at low Q²

Measurements of moments of structure functions provide tests of effective theories of QCD

Generalized GDH sum rule
$$I_{TT}(Q^2) = \frac{M^2}{4\pi^2 \alpha} \int_{v_0}^{\infty} \frac{\kappa_f}{v} \frac{\sigma_{1/2}(v,Q^2) - \sigma_{3/2}(v,Q^2)}{v} dv$$
$$= \frac{2M^2}{Q^2} \int_{0}^{x_0} [g_1(x,Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x,Q^2)] dx$$

Ji and Osborne generalized sum rule

$$\Gamma_1(Q^2) \equiv \int_0^{x_0} g_1(x,Q^2) dx = \frac{Q^2 S_1}{8},$$

S₁ is the forward virtual Compton amplitude

Burkhardt-Cottingham sum rule

$$\Gamma_2(Q^2) \equiv \int_0^1 g_2(x,Q^2) dx = 0$$

Neutron structure function moments at low Q²

- In Hall A, E97-110 measured neutron g_1 and g_2 using polarized ³He and detecting electrons in the HRS.
- New results in V. Sulkosky et al. arXiv:1908.05709
- Benchmark test of chiral effective field theory

$$\Gamma_1(Q^2) \equiv \int_0^{x_0} g_1(x, Q^2) dx = \frac{Q^2 S_1}{8}, \qquad \begin{array}{c} 0.06 \\ 0.04 \\ 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$$

Neutron structure function moments at low Q²

- In Hall A, E97-110 measured neutron g_1 and g_2 using polarized ³He and detecting electrons in the HRS.
- New results in V. Sulkosky et al. <u>arXiv:1908.05709</u>
- Benchmark test of chiral effective field theory

Deuteron structure function moments at low Q²

- In Hall B, CLAS measured proton and deuteron g₁ at low Q²
- Phys. Rev. Lett. 120, 062501 (2018)

Deuteron data

Summary

- Presented proton and neutron d₂ as a function of Q²
 - Q² dependence is puzzling
 - Need new lattice QCD calculations over range of Q²
- Upcoming measurements with 11 GeV accelerator
 - CLAS12 measure proton and deuteron g_1/F_1
 - Measure proton A₁ as x approaches 1.
 - Q² dependence in bins of x.
 - In Fall 2019, start two experiments Hall C
 - Measure polarized 3He g₁ and g₂
 - Extract neutron A₁ as x approaches 1.
 - Extract neutron d_2 at $Q^2 = 3,4,5$ and 6 GeV^2
- Benchmark tests of chiral effective theory at low Q2
 - No theory can explain all the data.
 - Expect results from Hall A from proton g₁ and g₂ soon.

