

Spin-Related Effect in hadron production at BESIII

Xiao-Rui Lyu (吕晓睿) (E-mail: <u>xiaorui@ucas.ac.cn</u>) University of Chinese Academy of Sciences (UCAS), Beijing

(On Behalf of the BESIII collaboration)

Xiao-Rui LYU

PacificSpin2019, Miyazaki

1

Outline

- >Introduction
- >BEPCII/BESIII
- >(Spin) Physics at BESIII
- Collins effect measurement
- $> \Lambda_{(c)}$ polarization measurement
- Summary and Outlook

Frontiers of the Standard Model

The Nucleon

Many challenges in modern physics manifest themselves in the nucleon:

• Challenging to describe from first principles

Approaches

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace building blocks

*C. Granados et al., EPJA 53, 117 (2017)

Xiao-Rui LYU

Hyperons – key to the strong interaction

- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: $m_c \approx 1300$ MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

EXAMPLE SITE SET UP: SET UP:

Examples of the BEPCII Collider

ESI Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_{D} and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

... and more

• Form factor

- ✓ An important observable of hadron structure
- ✓ To access time-like form factor through (ISR) electron-position annihilation process (*more details in Z. Meng's talk on Tuesday*)
 - To test the analyticity of G_E and G_M
 - Near threshold measurement of baryons: nucleon/hyperon
 - Unique hyperon data: Λ, Λc
- ✓ To extract Space-Like transition form factor using $\gamma \gamma^* \rightarrow P$
- Fragmentation functions (FF)
 - Single hadron inclusive production
 - \rightarrow unpolarized FF
 - ✓ Constrain FF at low energy scale and high z: $K^{\pm/0}/\pi^{\pm/0}+X$
 - ✓ New data for inclusive $\eta/\phi/\Lambda$ production...
 - Two hadron inclusive production
 - ➔ correlation of two FF
 - To probe spin-dependent FF, eg, Collins FF

BESIII Detector

TOF BTOF: two layers ETOF: 48 crys. for each

Particle ID Capacity

- ➢ dE/dx & TOF for PID
- Work well on $K/\pi < 1.0 \text{GeV}$

BESIII data taking

The BESIII Collaboration

15 countries, 72 institutes, ~500 members

Xiao-Rui LYU

€€SШ

EXAMPLE 5 Collins Fragmentation Function (FF)

J. C. Collins, Nucl. Phys. B396, 161 (1993)

$$D_{hq^{\dagger}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h},$$

D₁: the unpolarized FF H₁: Collins FF

 \rightarrow describes the fragmentation of a transversely polarized quark into a spinless hadron *h*.

 \rightarrow depends on $z = 2E_h/\sqrt{s}, P_{h\perp}$

 \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum.

Xiao-Rui LYU

PacificSpin2019, Miyazaki

SIDIS

Transversity 🛞 Collins FF

e+ e-

Collins FF 🛞 Collins FF

Global Analysis on Collins FF

- The Q² evolution of Collins FFs need to be improved and validated
- Low Q² data from e⁺e⁻ collider is useful.

FSI Predicted Collins Asymmetries

P. Sun and F. Yuan, Phys. Rev. D 88, 034016 (2013).

- Collins asymmetry is predicted larger at lower Q2 region!
- Asymmetries increase as z grows

■ Product of Two Collins FFs

- **Favored** fragmentation process describes the fragmentation of a quark of flavor q into a hadron with a valence quark of the same flavor: i.e.: $u \rightarrow \pi +$, $d \rightarrow \pi -$
- **Disfavored** for $d \rightarrow \pi^+$, $u \rightarrow \pi^-$

Unlike-sign pairs= **U**: $\pi^{\mp}\pi^{\pm}$: (fav x fav)+(dis x dis)

```
Like-sign pairs = L:
\pi^{\pm}\pi^{\pm}: (fav x dis)+(dis x fav)
```


 $\left[\begin{array}{c} \mathbf{\pi}^{+} \mathbf{u} \\ \mathbf{\pi}^{+} \mathbf{u} \\ \mathbf{fav} \\ \mathbf{fav}$

```
All charged pairs= C (U+L):

\pi\pi: (fav + dis)x(fav + dis)

\pi=\pi^{\pm}
```


- All charged pion pairs are divided into:
 - Unlike-sign pairs ($\pi^+\pi^-$)
 - Like-sign pairs ($\pi^+\pi^+$ and $\pi^-\pi^-$)
 - All Charged pairs ($\pi \pi$)

Besile Data Sample and Event Selection

PRL 116, 042001 (2016)

→ ~62 pb ⁻¹ @3.65GeV

- continuum region in-between J/psi and psi(2S) peaks
- fewer charm backgrounds!
- # of charged tracks >=3
- # of charged pion>=2
- No electron to suppress Bhabha
- The total visible energy >1.5GeV.

to suppress resonance decays to dipions, we require the charged pions

- $0.2 < z = 2E_{\rm h}/\sqrt{\rm s} < 0.9$
- open angle >120° to select back-toback pion-pair.

ESI Double Collins Asymmetries (DCA)

PRD 78, 032011

- The spin correlation of hadron fragmented from quark and antiquark in opposite hemisphere follows a $\cos(\phi 1+\phi 2)$ modulation in RF12 or a $\cos(2\phi_0)$ modulation in RF0
 - DCA were observed in both definitions by Belle and BaBar

Belle Collaboration: Phys. Rev. Lett. 96, 232002 (2006); Phys. Rev. D 78, 032011 (2008); Phys. Rev. D 86, 039905(E) (2012). BaBar Collaboration: Phys. Rev. D 90, 052003 (2014)

ESI Difficulties---event shape is not jetty

 $e^+e^- \to q\overline{q} \to h_1 h_2 X$

BEPCII energy Belle/Babar

h2

✓ In B factories, the thrust axis is used as a approximation of the q-qbar axis

➢ not needed in RF0, hence RF0 is adopted

 ✓ At BESIII, continuum process events distribute in a more isotropic way
 → very different situation compared to

very different situ
Belle/BaBar

The Reference Frame

Xiao-Rui LYU

$2\phi_0$ Raw Distribution

- The normalized ratio $R := \frac{N(2\phi_0)}{\langle N_0 \rangle}$
 - > For Charged, Unlike-sign and Like-sign pairs, we have R^{U} , R^{C} , R^{L}
- Raw $2\phi_0$ distributions are subjected to the limited acceptance and non-uniform efficiencies of the detector!
- The MC simulation does not include the Collins effect.
- Small deviations in Like and Unlike in data indicate asymmetries.

Double Ratio (DR)

• Acceptance effects and radiation effects can be reduced by performing the ratio of Unlike/Like sign pion pairs (R^U/R^L) or Unlike/Charged pairs (R^U/R^C)

$$\frac{R^U}{R^L} \simeq 1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} \cos(2\phi_0) G^U - G^L) \qquad \frac{R^U}{R^C} \simeq 1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} \cos 2\phi_0 (G^U - G^C)$$

$$\frac{R^U}{R^U} = a \cos(2\phi_0) + b.$$

• **DRs are fitted by** $\frac{1}{R^{L(C)}} = a\cos(2\phi_0) +$

• $A_{UL(C)} = \frac{a}{b}$ represents the asymmetries of interest. Xiao-Rui LYU PacificSpin2019, Miyazaki

Fit to DR in Different *z* **Bins**

Extraction of the Asymmetries

PRL 116, 042001 (2016)

- Collins asymmetry measured as functions of
 - ✓ 6 symmetric (z_1, z_2) bins
 - ✓ 5 bins of p_{t0}
 - ✓ Asymmetry v.s. $\sin^2 \theta_2 / (1 + \cos^2 \theta_2)$
 - ✓ Comparison with prediction in PRD 93, 014009 (2016)

Comparisons of Asymmetries

Comparison between different results obtained at different Q²:

- BaBar and Belle @ $Q^2 \sim 110 \text{ GeV}^2$
- BESIII @ Q²~13 GeV²
- BaBar and Belle results that fall in the larger BESIII z-bins are averaged taking into account the statistical and systematic uncertainties
- Good agreement between different data set for low z
- BESIII larger asymmetries in the last z-bins: consistent with the prediction reported in *arXiv:1505.05589*

Xiao-Rui LYU

Relevant Future Analyses

- $-\sim 360/\text{pb}$ data @ $\sqrt{s} = 3.51\text{GeV}$, which will improve precision of the dipion Collins asymmetry
- Simultaneous measurement of charged KK, $K\pi$ and $\pi\pi$ Collins asymmetries (PID unfolding)
- Including neutral particles (π⁰, η, Ks) in final states
- Potential of data above charm threshold (up to $Q^2 \sim 25 \text{ GeV}^2$) can be explored

HESI Transverse polarization of baryons in e⁺e⁻ collision

Unpolarized e^+e^- annihilations:

- entangled $\Lambda\overline{\Lambda}$ production
- more sensitive to access transverse polarization baryon

$$|\Lambda\bar{\Lambda}\rangle^{C=-1} = \chi_1 \frac{1}{\sqrt{2}} [|\Lambda\rangle|\bar{\Lambda}\rangle - |\bar{\Lambda}\rangle|\Lambda\rangle],$$

$$\bar{P}_Y(\cos\theta_\Lambda) = \frac{\sqrt{1 - \alpha_{\psi}^2} \cos\theta_\Lambda \sin\theta_\Lambda}{1 + \alpha_{\psi} \cos^2\theta_\Lambda} \sin(\Delta \Phi)$$

 $\Delta \Phi$: complex phase between two helicity amplitudes: $A_{\frac{1}{2},\frac{1}{2}}$ and $A_{\frac{1}{2},-\frac{1}{2}}$

Xiao-Rui LYU

C- and P- transformation

$$\begin{split} \alpha_{\Lambda} &= \frac{\left|B_{+}\right|^{2} - \left|B_{-}\right|^{2}}{\left|B_{+}\right|^{2} + \left|B_{-}\right|^{2}}, \alpha_{\overline{\Lambda}} = \frac{\left|\overline{B}_{+}\right|^{2} - \left|\overline{B}_{-}\right|^{2}}{\left|\overline{B}_{+}\right|^{2} + \left|\overline{B}_{-}\right|^{2}} \end{split}$$

$$CP \text{ invariance :}$$

$$\overline{B}_{-\lambda_{p}} &= \eta_{\Lambda}\eta_{p}\eta_{\pi}(-1)^{s_{\Lambda}-s_{p}-s_{\pi}}B_{\lambda_{p}} = -B_{\lambda_{p}}$$

If CP invariance:

 $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}}$

Previous Measurements 2018 PDG list

 $lpha_- \ {\sf FOR} \ {f \Lambda} o {m p} {m \pi}^-$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.642 ± 0.013	OUR AVERAGE				
0.584 ± 0.046	8500	ASTBURY	1975	SPEC	
$0.649\ {\pm}0.023$	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From Ξ decay
$0.645\ {\pm}0.017$	10130	OVERSETH	1967	OSPK	\varLambda from $\pi^- p$
0.62 ± 0.07	1156	CRONIN	1963	CNTR	\varLambda from $\pi^- p$

 $lpha_+ \ {\sf FOR} \ {\overline \Lambda} o {\overline p} \pi^+$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.71 ± 0.08	OUR AVERAGE				
$-0.755\ {\pm}0.083\ {\pm}0.063$	\approx 8.7k	ABLIKIM	2010	BES	$J/\psi ightarrow \Lambda \overline{\Lambda}$
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$

EESI Hyperon decay parameters @ BESIII

 $e^+e^-
ightarrow J/\psi
ightarrow \Lambda \overline{\Lambda}
ightarrow p \overline{p} \pi^+ \pi^-$

G. Faldt and A. Kupsc PLB,772, 16 (2017) EPJA, 52, 141 (2016) EPJA, 51, 74 (2015).

$$\frac{d\sigma}{d\Omega} \propto T_0 + \sqrt{1 - \alpha_{J/\psi}^2} \sin(\Delta)(\alpha_\Lambda T_3 + \alpha_{\bar{\Lambda}} T_4) + \alpha_\Lambda \alpha_{\bar{\Lambda}} [T_1 + \sqrt{1 - \alpha_{J/\psi}^2} \cos(\Delta) T_2 + \alpha_{J/\psi} T_5],$$

 T_0 : angular distribution of Λ and $\overline{\Lambda}$ T_3 , T_4 , transverse polarization

e

$$^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \bar{p} \pi^+ \pi^-, \ p \bar{n} \pi^- \pi^0$$

34

Fitting results and Λ decay asymmetries <u>Nature Physics (2019)</u>

Parameters	This measurement	Previous results
 α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 [19]
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 [8]
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 [8]
\bar{lpha}_0	$-0.692 \pm 0.016 \pm 0.006$	
$\Delta\Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	
A_{Λ}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 [8]
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	

Xiao-Rui LYU

æ

PacificSpin2019, Miyazaki

Consequences

PARTICLE PHYSICS

Anomalous asymmetry

A measurement based on quantum entanglement of the parameter describing the asymmetry of the Λ hyperon decay is inconsistent with the current world average. This shows that relying on previous measurements can be hazardous.

Ulrik Egede

New input for many other measurements:
1) polarization
2) Asymmetry of the Λ_b and Λ_c
3) CPV in Λ_b and Λ_c decays
4) Decays of other charmed and beauty baryons

More analyses

- Update measurements using 10 billion J/ψ
 - A_{Λ} sensitivity: 5×10^{-3}
- $J/\psi, \psi(2S) \to \Sigma^+ \overline{\Sigma}^-, \Xi^0 \overline{\Xi}^0, \Xi^- \overline{\Xi}^+$
- $\psi(2S) \rightarrow \Omega^- \overline{\Omega}^+$
- Polarization of Λ_c^+ : $e^+e^- \rightarrow \Lambda_c^+\overline{\Lambda}_c^-, \Lambda_c^+ \rightarrow \Lambda\pi^+, \Sigma^+\pi^0, \Sigma^0\pi^+, K_Sp @4.6GeV [arXiv:1905.04707]$

$\Lambda_c^+ ightarrow$		pK_S^0	$\Lambda \pi^+$	$\Sigma^+\pi^0$	$\Sigma^0 \pi^+$	
$lpha_{BP}^{\Lambda_c^+}$	Predicted	$\begin{array}{cccc} -1.0 \ [16], & 0.51 \ [11] \\ -0.49 \ [10], & -0.90 \ [10] \\ -0.49 \ [17], & -0.97 \ [18] \\ -0.66 \ [19], & -0.90 \ [30] \\ -0.99 \ [20], & -0.91 \ [31] \end{array}$	$\begin{array}{c} -0.70 \ [16], \ -0.67 \ [11] \\ -0.95 \ [10], \ -0.99 \ [10] \\ -0.96 \ [17], \ -0.95 \ [18] \\ -0.99 \ [19], \ -0.86 \ [30] \\ -0.99 \ [20], \ -0.94 \ [31] \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	PDG [2]		-0.91 ± 0.15	-0.45 ± 0.32		
	This work	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.57 \pm 0.10 \pm 0.07$	$-0.73 \pm 0.17 \pm 0.07$	

Xiao-Rui LYU

Summary and Outlook

- Collins effects measurement has been implemented using BESIII data @3.65GeV.
 - Nonzero Collins asymmetries were observed.
 - First measurement at medium energy, which is closer to SIDIS experiments
 - It allows to study the evolution of TMD objects
 - Further extensions include high *Lumi*. data and more types of final states
- Hyperon Spin correlations in production
 - Observation of Λ transverse polarization in $J/\psi \rightarrow \Lambda \overline{\Lambda}$ decays
 - New way to study Hyperon CPV
 - Already rewritten the PDG book for Λ decays
 - Future results using 10B J/ψ decays will improve the CPV search
 - Plan to update the results with more data set and do the same for Ξ / $\!\Sigma$

Thank you! 谢谢!

Difficulties at higher energy

✓ Thrust value is used to suppress backgrounds at Belle/BaBar.
✓ However, it is not a good cut criterion at BESIII

Other considerations and checks

- Misidentification of K and π : unfolding the measurement of $A^{\pi\pi}$ and $A^{K\pi}$
- Gluon radiation effect: subtracting normalized yields $R^U R^{L(C)}$
- Higher harmonic terms: including in the fit function
- Possible charge-dependent acceptance effects: studying double ratio of positively over negatively charged pion pairs
- Beam polarization: studying the angular distribution of $e^+e^- \rightarrow \mu^+\mu^-$
- Several zero asymmetry tests

Most earlier measurement on α_{-}

• CNTR: $\pi^- + p \rightarrow \Lambda + K^0$

Phys.Rev. 129 (1963) 1795-1807

 $W(\psi) = 1 + \alpha \, S \sin \epsilon \, \cos \psi$

FIG. 1. Schematic diagram showing arrangement of apparatus. An example of an event has been sketched in.

$$\alpha = \frac{2}{\pi} \frac{1}{\langle S \rangle \langle \sin \epsilon \rangle} \frac{N_{+} - N_{-}}{N_{+} + N_{-}},$$

1156 events $\langle S \rangle = 0.565$ $\langle \sin \epsilon \rangle = 0.84$, $\alpha = 0.62$.

Xiao-Rui LYU

€S**Ⅲ**Quick response from PDG2019

α_{-} FOR $\Lambda \rightarrow p\pi^{-}$ 2019 PDG list

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.750 \pm 0.009 \pm 0.004$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
•••We do not use the	following da	ta for averages, f	its, limits, e	etc. • • •	
0.584 ± 0.046	8500	ASTBURY	1975	SPEC	
0.649 ± 0.023	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From <i>Ξ</i> decay
0.645 ± 0.017	10130	OVERSETH	1967	OSPK	$arLambda$ from $\pi^- p$
0.62 ± 0.07	1156	CRONIN	1963	CNTR	$arLambda$ from $\pi^- p$

$lpha_+ \; \mathsf{FOR} \; \overline{oldsymbol{\Lambda}} o \overline{oldsymbol{p}} \pi^+$

VALUE	EVTS	DOCUMENT	T ID	TECN	COMMENT		
$-0.758 \pm 0.010 \pm 0.007$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$		
 We do not use the following data for averages, fits, limits, etc. 							
$-0.755 \pm 0.083 \pm 0.063$	pprox 8.7k	ABLIKIM	2010	BES	$J/\psi o \Lambda \overline{\Lambda}$		
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$		

Why hyperons using J/psi decays

10 billion J/psi events collected

- > Large BRs in J/ψ decays
- Quantum correlated pair productions

Background free

Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B~(imes 10^6)$	Efficiency	Number of reconstructed
$J/\psi \rightarrow \Lambda \bar{\Lambda}$	1.61 ± 0.15	16.1 ± 1.5	40%	3200 X 10 ³
$J/\psi \rightarrow \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9	25%	600 X 10 ³
$J/\psi \rightarrow \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4	24%	640 X 10 ³
$J/\psi \rightarrow \Sigma(1385)^- \overline{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5		
$J/\psi \rightarrow \Sigma(1385)^- \overline{\Sigma}(1385)^+$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2		
$J/\psi \to \Xi^0 \Xi^0$	1.20 ± 0.24	12.0 ± 2.4	14%	670 X 10 ³
$J/\psi \rightarrow \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0	19%	810 X 10 ³
$J/\psi \rightarrow \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4		
$J/\psi \rightarrow \Xi (1530)^- \overline{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5		
$\psi(2S) \rightarrow \Omega^- \bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03		

 Δ = complex phase between $A_{\frac{1}{2}\frac{1}{2}}$ and $A_{\frac{1}{2}\frac{1}{2}}$

$$\frac{d|\mathcal{M}|^2}{d\cos\theta} \propto (1 + \alpha_{J/\psi}\cos^2\theta), \quad \text{with} \quad \alpha_{J/\psi} = \frac{|A_{1/2,-1/2}|^2 - 2|A_{1/2,1/2}|^2}{|A_{1/2,-1/2}|^2 + 2|A_{1/2,1/2}|^2}$$

Xiao-Rui LYU

PacificSpin2019, Miyazaki

45