PacificSpin2019

The 11th Circum-Pan-Pacific Symposium on High Energy Spin Physics

August 27 - 30, 2019

Miyazaki, Japan

Topics • Spin Structure of the Proton and Neutron

- Polarized Deep Inelastic Scattering, p-p Collision, Drell-Yan Process
- Generalized Parton
 Distributions
- Transverse Momentum
 Dependent Parton Distributions
- Perturbative QCD, Lattice QCD

Local Organizing Committee Co-Chairs: T. Iwata, T. Matsuda, T.-A. Shibata N. Doshita, Y. Goto, Y. Hatta, Y. Koike, S. Kumano, Y. Maeda, Y. Miyachi, K. Nagai, I. Nakagawa, K. Nakano, G. Nukazuka, S. Sasaki, S. Sawada, R. Seidl, K. Tanaka

https://sites.google.com/quark.kj.yamagata-u.ac.jp/pacspin2019 Contact: pacificspin2019@nucl.phys.titech.ac.jp Deadline for early registration and Deadline for abstract submission for contributed talks: June 27, 2019 Latest results in the extraction of the Sivers and Transversity distributions

Marco Radici INFN INFN - Pavia

In collaboration with

- A. Bacchetta (Univ. Pavia)
- F. Delcarro (JLab)

the Sivers function

TMDs @twist=2

quark polarization

nucleon polarization		U	L	Т
	U	f1		h₁⊥
	L		g 1L	h₁∟⊥
	т	$\bm{f_{1T^{\bot}}}$	g 1t	$h_1 h_{1T^{\perp}}$

the Sivers function

distortion of quark distribution in polarized proton P^{\uparrow} along direction \perp polarization ("spin-orbit")

3

Sivers function ↔ quark total J

Ji's sum rule $J_z^q(Q^2) = \frac{1}{2} \int_0^1 dx \, x \left[H^q(x,0,0;Q^2) + E^q(x,0,0;Q^2) \right]$ model lensing funct. L(x) + fit f_{1T} $\int dk_T f_{1T}^{\perp q}(x,k_T;Q_L^2) = -L(x) E^q(x,0,0;Q_L^2)$

non-universality of Sivers function

Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scatters frame [25]. $P_{h\perp}$ and S_{\perp} have the transverse parts of P_h and S with respect to P_h and S with respect to P_h and S with respect to P_h and P_h and S with respect to P_h and P_h

momentum

 $\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h d\mathbf{P}_{hT}^2} \underbrace{\operatorname{a}^{\alpha_v^2}\operatorname{cie}_{xyQ^2} \circ f(\operatorname{situal}^2) \circ f($ $\vec{S}_{T} \quad q = l - l' \text{ and its virtuality } Q^{2} = \overline{h} q^{2} \text{ We use the conventional variable}$ $x = \frac{Q^{2}}{2PF q} N, \gamma^{*} = \sum_{q} H^{q} (Q^{2}) \frac{P \cdot q}{P[w_{p}^{*} * f_{N}^{q} D_{1}^{q}]} \quad z = \frac{P \cdot q}{P}$ and write M and M_h for the respective masses of the M^2 target badron h. We take the limit of large Q^2 at fixed x, y, z, and through matching Y term neglect corrections in the masses of the hadrons or the lepton. P_{hT} It is convenient to $\vec{d}_{s}^{[w,fD]} = \vec{d}_{s}^{x} \sum_{e^{2}} \int d^{2}\mathbf{k} d^{2}\mathbf{p} d^{2}\mathbf{p} d^{2}\mathbf{k} d^{2}\mathbf{p} d^{2}\mathbf{p} d^{2}\mathbf{p} d^{2}\mathbf{k} d^{2}\mathbf{p} d^{2}\mathbf{p}$ and q collinear. We define the transverse part $P_{h\perp}^{\mu}$ of P_{h}^{μ} as orthogonal v momenta P and q. Likewise, we define the transverse part S^{μ}_{\perp} of the spin target, as well as its longitudinal projection S_{\parallel} along P^{μ} . We further de angles ϕ_h and ϕ_S of P_h^{μ} and S^{μ} with respect to the lepton plane in ac Trento conventions [23], as shown in Fig. 1. Covariant expressions for discussed can be found in [14]. Finally, we write λ_e for the longitudinal incoming lepton, with $\lambda_e = 1$ corresponding to a purely right-handed be

The lepton-hadron cross section can then be parameterized as [14]

Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scatter of P_h and S with respect to P_h and P_h and

momentum

 $\vec{S}_{T} \quad q = l - l' \text{ and its virtuality } Q^{2} = \overline{h} q^{2} \text{ We use the conventional variable}$ $x = \frac{Q^{2}}{2PFq} \sum_{N,\gamma^{*}} -\frac{1}{P} \frac{P \cdot q}{P[\psi_{V}^{*}]} \int_{N}^{\infty} D_{1}^{q} = \sum_{n} \frac{P \cdot q}{P[\psi_{V}^{*}]} \int_{N}^{\infty} D_{1}^{q} = \frac{P \cdot q}{P}$ and write M and M_h for the respective masses of the $M^{20}(M^{20})$ target **P**hT badron h. We take the limit of large Q^2 at fixed x, y, z, and through matching Y term neglect corrections in the masses of the hadrons or the lepton. It is convenient to \vec{d} is $c^{[w,fD]} = \vec{d}$ is $c^{[w,fD]} = \vec{d}$ is $c^{[w,fD]} = \vec{d}$ is $c^{[w,fD]} = \vec{d}$ is $c^{[w,fD]} = \vec{d}$. The experimental observables for SIDIS is and q collinear. We define the transverse part $P_{h\perp}^{\mu}$ of P_{h}^{μ} as orthogonal with every index of $P_{h\perp}^{\mu}$ and $P_{h\perp}^{\mu}$ and $P_{h\perp}^{\mu}$ and $P_{h\perp}^{\mu}$ and $P_{h\perp}^{\mu}$ and $P_{h\perp}^{\mu}$ of the spin momenta P and q. Likewise, we define the transverse part S_{\perp}^{μ} of the spin momenta P_{μ} and P_{μ}^{μ} . Surviving target, as well as its longitudinal projection S_{\parallel} along P^{μ} . We further de $F_{UU,T}(x,z, \mathbf{P}_{hT}^{2}, Q^{2}) = 2\pi \sum_{a} \frac{e^{2} x}{a n g l g g} \phi_{b}^{d\xi_{T}} \tilde{\xi}_{T}^{d} J_{\phi}(\xi_{T}) \mathbf{P}_{h}^{p\mu} \tilde{f}_{a}^{d} S^{\mu} \tilde{\xi}_{T}^{d} \tilde{f}_{a}^{d} \tilde{f}_{a}^{d$ $F_{UT,T}^{\sin(\phi_h - \phi_S)}(x, z, \mathbf{P}_{hT}^2, Q^2) = -2\pi M_{UT,T}^{\infty} e^2 x_{dh} be^{\xi} f \xi^2 J_{d}(\xi_T | \mathbf{P}_{hT} | \mathbf{P}_{hT}$ incoming lepton, with $\lambda_e = 1$ corresponding to a purely right-handed be The lepton-hadron cross section can then be parameterized as [14]

the Sivers Single-Spin Asymmetry

First extraction of Sivers function using unpolarized TMDs f_1 and D_1 extracted from global fit of (SIDIS + Drell-Yan + Z-boson) data

Bacchetta, Delcarro, Pisano, Radici, in preparation

At LO
$$\tilde{f}_1^q(x,\xi_T^2;Q^2) = f_1^q(x,\mu_\xi^2) e^{S(\mu_\xi^2,Q^2)} e^{g_K(\xi_T) \log(Q^2/Q_0^2)} \tilde{f}_{1NP}^q(x,\xi_T^2)$$
 and similar for D₁
Collins, "Foundations of Perturbative QCD" (11) perturbative DSEHS15@NLO

 $\begin{aligned} f_1 &= \text{collinear PDF} & \text{GJR08FFnloE} \\ \text{S} &= \text{Sudakov form factor,} \\ & \text{at NLL includes A}_1, \text{A}_2, \text{B}_1 \end{aligned}$

At LO
$$\tilde{f}_{1}^{q}(x,\xi_{T}^{2};Q^{2}) = f_{1}^{q}(x,\mu_{\xi}^{2}) e^{S(\mu_{\xi}^{2},Q^{2})} e^{g_{K}(\xi_{T}) \log(Q^{2}/Q_{0}^{2})} \tilde{f}_{1NP}^{q}(x,\xi_{T}^{2})$$
 and similar for D₁
Collins, "Foundations of perturbative perturbative perturbative $QCD''(11)$ perturbative $g_{K} = -g_{2}\xi_{T}^{2}/4$
f_{1} = collinear PDF GJR08FFnloE
S = Sudakov form factor,
at NLL includes A_{1}, A_{2}, B_{1}
 $\tilde{f}_{1NP} = F.T.\left(\frac{1}{\pi}\frac{1+\lambda k_{T}^{2}}{g_{1}+\lambda g_{1}^{2}}e^{-k_{T}^{2}/g_{1}}\right)$
 $\tilde{D}_{1NP} = F.T.\left(\frac{1}{\pi}\frac{e^{-P_{T}^{2}/g_{3}}+\lambda_{F}P_{T}^{2}/z^{2}e^{-P_{T}^{2}/g_{4}}}{g_{3}+\lambda_{F}/z^{2}g_{4}^{2}}\right)$
 $g_{1}(x) = g_{1}(0.1)\frac{(1-x)^{\alpha}x^{\sigma}}{(1-0.1)^{\alpha}(0.1^{\sigma})}$
 $g_{3/4}(z) = g_{3/4}(0.5)\frac{(1-z)^{\gamma}(z^{\beta}+\delta)}{(1-0.5)^{\gamma}(0.5^{\beta}+\delta)}$

(x, Q²) - coverage

Adolph et al., E.P.J. C73 (13)

Airapetian et al., P.R. D87 (13)

first unpolarized TMD global fit

Nucleon tomography in momentum space

We have extracted the unpolarized transverse momentum dependent parton distribution function (TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper kernel) from Drell-Yan data. The analysis has been performed in the ζ -prescription with NNLO perturbative inputs. We have also provided an estimation of the errors on the extracted functions with the replica method. The values of TMDPDF and rapidity anomalous dimension, together with the code that evaluates the cross-section, are available at [45], as a part of the artemide package. We plan to release grids for TMDPDFs extracted in this work also through the TMDlib [69].

parametrization of Sivers f_{1T}

scale Q₀ $\tilde{f}_{1T}^{\perp q}(x,\xi_T^2;Q_0^2) = f_{1T}^{\perp(1)q}(x,Q_0^2) \tilde{f}_{1TNP}^{\perp}(x,\xi_T^2)$

$$\left(\frac{1}{N_T}\frac{1}{\pi}\frac{1+\lambda_S k_T^2}{M_1^2+\lambda_S M_1^4}e^{-k_T^2/M_1^2} f_{1NP}(x,k_T^2)\right)$$

normalized flavor-independent double Gaussian on top of f_{1NP}

parametrization of Sivers $f_{1T} \perp$

scale Q₀ $\tilde{f}_{1T}^{\perp q}(x, \xi_T^2; Q_0^2) = f_{1T}^{\perp (1)q}(x, Q_0^2) \tilde{f}_{1TNP}^{\perp}(x, \xi_T^2)$ normalization $f_{1T}^{\perp (1)q} = \frac{1}{N_x^q} f_{Siv}^q(x) \quad f_1^q(x, Q_0^2)$ $f_{1T}^{\perp (1)q} = \frac{1}{N_x^q} f_{Siv}^q(x) \quad f_1^q(x, Q_0^2)$ $f_{1T}^{\perp (1)q} = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$ Chebyshev polynomials

parametrization of Sivers $f_{1T} \perp$

scale Q₀
$$\tilde{f}_{1T}^{\perp q}(x, \xi_T^2; Q_0^2) = f_{1T}^{\perp (1)q}(x, Q_0^2) \tilde{f}_{1TNP}^{\perp}(x, \xi_T^2)$$

normalization
 $f_{1T}^{\perp (1)q} = \frac{1}{N_x^q} f_{Siv}^q(x) \quad f_1^q(x, Q_0^2)$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
further multiply by $\frac{1}{N_{Tmax}} \frac{1}{N_{xmax}}$
 $\begin{cases} N_{Tmax} = \max_{k_x^2} \left[\frac{k_T}{M} \frac{1}{N_T} \frac{1}{\pi} \frac{1 + \lambda_S k_T^2}{M_1^2 + \lambda_S M_1^4} e^{-k_T^2/M_1^2} \right]$
 $N_{xmax} = \max_{x,q} \left[\frac{1}{N_x^q} f_{Siv}^q(x) \right]$
to grant positivity $\left(f_{1T}^{\perp (1)}(x, k_T^2) \right)^2 \le \frac{k_T^2}{4M^2} (f_1(x, k_T^2))^2$

parametrization of Sivers $f_{1T} \perp$

scale Q₀
$$\tilde{f}_{1T}^{\perp q}(x, \xi_T^2; Q_0^2) = f_{1T}^{\perp (1)q}(x, Q_0^2) \tilde{f}_{1TNP}^{\perp}(x, \xi_T^2)$$

normalization
 $f_{1T}^{\perp (1)q} = \frac{1}{N_x^q} f_{Siv}^q(x) \quad f_1^q(x, Q_0^2)$
 $f_{1T}^{\perp (1)q} = \frac{1}{N_x^q} f_{Siv}^q(x) \quad f_1^q(x, Q_0^2)$
 $f_{Siv}^{q}(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^q(x) = x^{\alpha_q} (1-x)^{\beta_q} [1 + A_q T_1(x) + B_q T_2(x)]$
 $f_{Siv}^{N_{Tmax}} = \max_{k_T^q} \left[\frac{k_T}{M} \frac{1}{N_T} \frac{1}{\pi} \frac{1 + \lambda_S k_T^2}{M_1^2 + \lambda_S M_1^4} e^{-k_T^2/M_1^2} \right]$
 $f_{Nxmax} = \max_{x,q} \left[\frac{k_T}{M} \frac{1}{N_T} \frac{1}{\pi} \frac{1 + \lambda_S k_T^2}{M_1^2 + \lambda_S M_1^4} e^{-k_T^2/M_1^2} \right]$
 $f_{Siv}^{N_Tmax} = \max_{x,q} \left[\frac{1}{N_T^q} f_{Siv}^q(x) \right]$
 $f_{Siv}^{N_Tmax} = \max_{x,q} \left[\frac{1}{N_T^q} f_{Siv}^q(x) \right]$

2 + 3x4 = 14 parameters

evolution of Sivers $f_{1T} \perp$

approximate evolution of T_F as DGLAP evolution of f₁

data used in the fit

sample of fit

results

results

tomography of transversely polarized proton

the Transversity function

1st Mellin moment (tensor charge) not directly accessible in \mathcal{L}_{SM} \rightarrow low-energy footprint of BSM physics at higher scale ?

h₁ from first global fit of SIDIS + p-p data

Radici and Bacchetta, P.R.L. **120** (18) 192001

the di-hadron mechanism

transversity is chiral-odd \rightarrow need a chiral-odd partner

- the di-hadron mechanism: IFF H_1^{4}

2-hadrons semi-inclusive production

collinear framework

- h_1 probed as PDF
- factorization theorems for all hard processes \rightarrow universality of h₁ H₁< mechanism

advantages of di-hadron mechanism

factorization theorems for all hard processes

data used in the global fit

Airapetian et al., JHEP **0806** (08) 017 Adolph et al., P.L. **B713** (12) Braun et al., E.P.J. Web Conf. **85** (15)

Vossen et al., P.R.L. 107 (11) 072004

run 2006 (s=200 GeV²)

Adamczyk et al. (STAR), P.R.L. **115** (2015) 242501

run 2011 (s=500 GeV²)

Adamczyk et al. (STAR), P.L. **B780** (18) 332

the phase space

- limited to mostly medium/high x
- guess low-x behavior (relevant for calculation of tensor charge see later)

currently, only LO analysis

access only $q-\overline{q} = q_v$, q=u,dvalence flavors in SIDIS A_{UT}

theoretical uncertainties

unpolarized Di-hadron Fragmentation Function D1

- quark D₁q is well constrained by $e^+e^- \rightarrow (\pi^+\pi^-) X$ (Montecarlo)
- **gluon** D_1^g is **not** constrained by $e^+e^- \rightarrow (\pi^+\pi^-) X$ (currently, LO analysis)
- **no data** available yet for $p p \rightarrow (\pi^+\pi^-) X$

statistical uncertainty

the bootstrap method

- shift each exp. point by Gaussian noise within exp. variance
- create sets of virtual points to be fitted: 50, 100, 200 sets... until average and standard deviation reproduce original exp. points (here, 200x3=600)
- exclude largest and smallest 5% => 90% band

automatically accounts for correlations

choice of functional form

functional form whose Mellin transform can be computed analytically and complying with Soffer Bound at any x and scale Q²

$$h_1^{q_v}(x;Q_0^2) = F^{q_v}(x) \begin{bmatrix} SB^q(x) + \overline{SB}^{\overline{q}}(x) \end{bmatrix}$$

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ Soffer Bound \\ 2|h_1^q(x,Q^2)| \le 2 SB^q(x,Q^2) = |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \\ & & \\ & & \\ MSTW08 \quad DSSV \end{array}$$

$$(x) = \frac{N_{q_v}}{\max_x[|F^{q_v}(x)|]} x^{A_{q_v}} \left[1 + B_{q_v} \operatorname{Ceb}_1(x) + C_{q_v} \operatorname{Ceb}_2(x) + D_{q_v} \operatorname{Ceb}_3(x)\right] \\ & & \\ \operatorname{Ceb}_n(x) \text{ Cebyshev polynomial} \end{array}$$

10 fitting parameters

constrain parameters

 F^{q_v}

 $|N_{q_v}| \le 1 \Rightarrow |F^{q_v}(x)| \le 1$ Soffer Bound ok at any Q²

constrain parameters : low-x trend

$$\lim_{x \to 0} x SB^{q}(x) \propto x^{a_{q}}$$

$$\lim_{x \to 0} F^{q_{v}}(x) \propto x^{A_{q}}$$

$$h_{1}^{q}(x) \stackrel{x \to 0}{\approx} x^{A_{q}} + a_{q} - 1$$

$$\text{tensor charge} \quad \delta q(Q^{2}) = \int_{x_{\min}}^{1} dx h_{1}^{q-q}(x, Q^{2})$$

$$\text{low-x behavior important}$$

$$\text{constrain parameters} \quad \text{our choice}$$

$$\delta q \quad \text{finite} = A_{q} + a_{q} > 0 \quad A_{q} + a_{q} > \frac{1}{3} \quad \left| \int_{0}^{x_{\min}} dx \right| \sim 1\% \text{ of } \left| \int_{x_{\min}}^{1} dx \right|$$

$$\text{for } x_{\min} = 10^{-6} \text{ from MSTW08}$$

$$\text{Other choices}$$

$$\stackrel{\text{``massive'' jet in DIS \rightarrow h_{1} \text{ at twist 3}}{\text{violation of Burkardt-Cottingham s.r.}} \int_{0}^{1} dx g_{2}(x) \propto \int_{0}^{1} dx \frac{h_{1}(x)}{x} \rightarrow A_{q} + a_{q} > 1$$

small-x dipole picture $h_1^{q_v}(x) \stackrel{x \to 0}{\approx} x^{1-2\sqrt{\frac{\alpha_s(Q^2)N_c}{2\pi}}} \longrightarrow \text{at } Q_0 \quad A_q + a_q \sim 1$ Kovchegov & Sievert, arXiv:1808.10354

Accardi and Bacchetta, P.L. B773 (17) 632

Results

Our first global fit

first ever extraction of transversity from data of SIDIS and proton-proton collisions

Radici and Bacchetta, P.R.L. **120** (18) 192001

the extracted transversity

Comparison with other extractions

sensitivity to th. uncertainty

sensitivity to th. uncertainty

p-p: u~d, gluon @LO but **SIDIS:** u~(8x)d, gluon @NLO

need data from target more sensitive to down (deuteron, ³He) and need data from multiplicities in p+p \rightarrow ($\pi\pi$)+X

The tensor "charge" of the proton

1st Mellin moment of transversity PDF \Rightarrow tensor "charge"

$$\delta q \equiv g_T^q = \int_0^1 dx \; \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

tensor charge connected to tensor operator

$$\langle P, S_p | \bar{q} \sigma^{\mu\nu} q | P, S_p \rangle = (P^{\mu} S_p^{\nu} - P^{\nu} S_p^{\mu}) \, \delta q$$

$$= (P^{\mu} S_p^{\nu} - P^{\nu} S_p^{\mu}) \, \int dx \, h_1^{q-\bar{q}}(x, Q^2)$$
on lattice

compute on lattice

lattice δ q

preferably the isovector $g_T = \delta u - \delta d$ (cancellation of "disconnected" diagrams) extract transversity from data with transversely polarized protons

pheno δ q

Results for our global fit

Results for our global fit

Results for our global fit

pheno vs. lattice tensor charge

main problem of "pheno δq " is extrapolating outside data..

constraining "pheno g_T " with "lattice g_T " as **JAM** Collaboration did ?

P.R.L. **120** (18) 152502, arXiv:1710.09858

Constraining our global fit with "lattice g_T "

if we constrain our **global fit** with lattice results for all components of tensor charge (up, down, isovector) the χ^2 clearly deteriorate

 $\overline{g_T}^{latt} = 1.004 \pm 0.057$ $\overline{\delta u}^{latt} = 0.782 \pm 0.031$ $\overline{\delta d}^{latt} = -0.218 \pm 0.026$

truncated tensor charge

expect stability when integrating on x-range of exp. data...

- **1)** global fit + constrain g_T , δu , δd
- **2) global fit + constrain g**_T
- **3) global fit '17** *Radici & Bacchetta, P.R.L.* **120** (18) 192001

5) "TMD fit" Kang et al., P.R. D93 (16) 014009

Compass pseudo-data

add to data of our global fit a new set of SIDIS pseudo-data for **deuteron** target

statistical error ~ 0.6 x [error in 2010 proton data] <A> = average value of replicas in previous global fit

study impact on precision of previous global fit

Adding Compass pseudodata

range [0.0065, x , 0.28]

CLAS12 pseudo-data

add to data of our global fit a new set of SIDIS pseudo-data for **proton** target

х

Mh

z

Adding CLAS12 pseudodata

range [0.075, x , 0.53]

PRELIMINARY

PRELIMINARY

Conclusions

Sivers

- first extraction using unpolarized TMD f₁ & D₁ extracted from global fit of data in a consistent TMD framework
- similar to other extractions but **more realistic** description of **uncertainties**
- **tomography** of transversely polarized proton

Transversity

- first global fit for chiral-odd transversity
- NO simultaneous compatibility with lattice for tensor charge in up, down, and isovector channels
- adding Compass and CLAS12 SIDIS pseudodata increases precision of down and up, respectively
- adding STAR s=500 data gives puzzling results: need sea quarks ?

Conclusions

Sivers

- first extraction using unpolarized TMD f₁ & D₁ extracted from global fit of data in a consistent TMD framework
- similar to other extractions but **more realistic** description of **uncertainties**
- tomography of transversely polarized proton

Transversity

- first global fit for chiral-odd transversity
- NO simultaneous compatibility with lattice for tensor charge in up, down, and isovector channels
- adding Compass and CLAS12 SIDIS pseudodata increases precision of down and up, respectively
- adding STAR s=500 data gives puzzling results: need sea quarks ?

