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the Sivers function

distortion of quark distribution in polarized proton P↑ 

along direction ⏊ polarization (“spin-orbit”)
Sivers, P.R. D41 (90) 83
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respond to the collinear PDFs: the longitudi-
nal polarized structure function discussed in
the previous section and the quark transver-
sity distribution. The latter is related to the
tensor charge of the nucleon. These three
distributions can be regarded as a simple
transverse momentum extension of the asso-
ciated integrated quark distributions. More
importantly, the power and rich possibilities
of the TMD approach arise from the sim-
ple fact that kT is a vector, which allows
for various correlations with the other vec-
tors involved: the nucleon momentum P , the
nucleon spin S, and the parton spin (say a
quark, sq). Accordingly, there are eight inde-
pendent TMD quark distributions as shown
in Fig. 2.12. Apart from the straightfor-
ward extension of the normal PDFs to the
TMDs, there are five TMD quark distribu-
tions, which are sensitive to the direction of
kT , and will vanish with a simple kT integral.

Because of the correlations between the
quark transverse momentum and the nucleon
spin, the TMDs naturally provide impor-
tant information on the dynamics of par-
tons in the transverse plane in momentum
space, as compared to the GPDs which de-
scribe the dynamics of partons in the trans-
verse plane in position space. Measurements
of the TMD quark distributions provide in-
formation about the correlation between the
quark orbital angular momentum and the nu-
cleon/quark spin because they require wave
function components with nonzero orbital
angular momentum. Combining the wealth
of information from all of these functions
could thus be invaluable for disentangling
spin-orbit correlations in the nucleon wave
function, and providing important informa-
tion about the quark orbital angular momen-
tum.
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Figure 2.13: The density in the transverse-momentum plane for unpolarized quarks with x = 0.1
in a nucleon polarized along the ŷ direction. The anisotropy due to the proton polarization is
described by the Sivers function, for which the model of [77] is used. The deep red (blue)
indicates large negative (positive) values for the Sivers function.

One particular example is the quark
Sivers function f

?q
1T which describes the

transverse momentum distribution corre-
lated with the transverse polarization vector
of the nucleon. As a result, the quark distri-

bution will be azimuthally asymmetric in the
transverse momentum space in a transversely
polarized nucleon. Figure 2.13 demonstrates
the deformations of the up and down quark
distributions. There is strong evidence of the
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f⊥
1T⇒ presence of a non-zero Sivers function        will induce a dipole 
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FIG. 4. [Color online] Transverse single-spin asymmetry amplitude for W+ (left plot) and W− (right plot) versus yW compared
with the non TMD-evolved KQ [11] model, assuming (solid line) or excluding (dashed line) a sign change in the Sivers function.
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[19] T. Sjöstrand, S. Mrenna and P. Skands. J. High Energy
Phys. 05 (2006) 026.

[20] P. Z. Skands, Phys. Rev. D 82, 074018 (2010).
[21] P. M. Nadolsky and C.-P. Yuan, Nucl. Phys. B 666, 3

(2003);
P. M. Nadolsky and C.-P. Yuan, Nucl. Phys. B 666, 31
(2003).

[22] GEANT Detector description and simulation tool, CERN
Program Library Long Write-up W5013, CERN Geneva.

[23] Z.-B. Kang, private communication.
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the Sivers effect in SIDIS
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I. INTRODUCTION

Inserire una qualche introduzione.

II. FORMALISM

The Sivers distribution function f?
1T (x, k

2
?) can be determined through its contributions to the cross section of

polarized the semi-inclusive deep inelastic scattering process, represented as

`(l) +N(P ) ! `(l0) + h(Ph) +X (1)

where a lepton ` with momentum l scatters off a hadron target N with mass M and momentum P . In the final state,
at least one hadron h with mass Mh and momentum Ph is measured, in addition to the scattered lepton momentum
l0. We define the usual kinematic invariants, through the space-like momentum transfer q = l� l0, with Q2 = �q2, as

x =
Q2

2P · q
, y =

P · q

P · l
, z =

P · Ph

P · q
, � =

2Mx

Q
. (2)

To access the Sivers function we perform a fit of the asymmetry Asin(�h��S)
UT , measured in SIDIS with a nucleon

target transversely polarized with respect to the virtual photon. The Sivers asymmetry Asin(�h��S)
UT can be isolated

from the SIDIS differential cross section through a sin(�h � �S) modulation. The corresponding cross-section can be
expressed in a model-independent way by a set of structure functions [15]:

d�
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=
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where ST is the covariant spin vector, PhT is the transverse component of the hadron momentum in the final state
and �S , �h are their respective azimuthal angle, as can be seen in fig. 1. The dots in the last term indicates higher
order contributions. We define " as

" =
1� y � 1

4�
2y2

1� y + 1
2y

2 + 1
4�

2y2
(4)

PhT h
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X

q
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Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target
rest frame [23]. Ph? and S? are the transverse parts of Ph and S with respect to the photon
momentum.

cover a variety of situations with di↵erent types of power behavior we wish to discuss.

Many of them have been measured in experiment, see [16–21] and the recent review in [22].

Working in the one-photon exchange approximation, we define the photon momentum

q = l � l0 and its virtuality Q2 = �q2. We use the conventional variables for SIDIS

x =
Q2

2P · q
, y =

P · q

P · l
, z =

P · Ph

P · q
, (2.2)

and write M and Mh for the respective masses of the proton target and the produced

hadron h. We take the limit of large Q2 at fixed x, y, z, and throughout this paper we

neglect corrections in the masses of the hadrons or the lepton.

It is convenient to discuss the experimental observables for SIDIS in a frame where P

and q collinear. We define the transverse part Pµ
h? of Pµ

h as orthogonal with respect to the

momenta P and q. Likewise, we define the transverse part Sµ
? of the spin vector Sµ of the

target, as well as its longitudinal projection Sk along Pµ. We further define the azimuthal

angles �h and �S of Pµ
h and Sµ with respect to the lepton plane in accordance with the

Trento conventions [23], as shown in Fig. 1. Covariant expressions for the quantities just

discussed can be found in [14]. Finally, we write �e for the longitudinal polarization of the

incoming lepton, with �e = 1 corresponding to a purely right-handed beam.

The lepton-hadron cross section can then be parameterized as [14]

d�

dx dy dz d�S d�h dP 2
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=
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FIG. 1: Kinematics of a lepton scattering off a polarized hadron, in a frame where with parallel hadron and virtual
photon momenta.

Isolating the structure functions related to the term sin(�h��S) and the unpolarized ones, we obtain the following
asymmetry:

Asin(�h��S)
UT = 2

R
d�Sd�h[d�"

� d�#] sin(�h � �S)R
d�Sd�h[d�" + d�#]

=
F sin(�h��S)
UT,T + "FUT,L

FUU,T + "FUU,L

(5)

In this analysis we neglect the lepton mass and rely on the one-photon exchange approximation. Moreover, in
the expansion in power of ↵0

S of the structure functions we consider terms of ↵0
S (LO) and we include perturbative

corrections up to NLL. Consequently the structure functions in eq. (5) can be written in terms of convolutions of
TMDs in the following way [12]:

FUU,T = C [f1D1] , (6)

FUU,L = O

✓
M2

Q2
,
P 2
hT

Q2

◆
= 0 , (7)

F sin(�h��S)
UT,T = C

"
�
ĥ · k?
M

f?
1TD1

#
(8)

F sin(�h��S)
UU,L = 0 (9)

where we introduced the normalized vector ĥ = PhT /|PhT | and denoted with C the transverse-momentum convolution
of TMDs, defined as

C[wfD] = x
X

a

e2a

Z
d2k?d

2P?�
2(zk? + P? � PhT )w(k?,P?)f

a(x,k2
?;Q

2)Da!h(z,P 2
?;Q

2) , (10)



the Sivers effect in SIDIS

2

CONTENTS

I. Introduction 2

II. Formalism 2
A. Parametrization of f?(1)

1T 5
B. TMD evolution of the Sivers function 7

III. Data Sets 8

IV. Results 8

V. Comparison with previous extractions of the Sivers function. 12
A. 2011 Pavia group 12
B. EIKV collaboration 14
C. Torino-Cagliari collaboration. 14
D. Graphical comparison of different extraction. 15

VI. Constraints on quark angular momentum. 15

VII. Appendix: Plots of best fit results for Sivers asymmetries. 17

References 19

I. INTRODUCTION

Inserire una qualche introduzione.

II. FORMALISM

The Sivers distribution function f?
1T (x, k

2
?) can be determined through its contributions to the cross section of

polarized the semi-inclusive deep inelastic scattering process, represented as

`(l) +N(P ) ! `(l0) + h(Ph) +X (1)

where a lepton ` with momentum l scatters off a hadron target N with mass M and momentum P . In the final state,
at least one hadron h with mass Mh and momentum Ph is measured, in addition to the scattered lepton momentum
l0. We define the usual kinematic invariants, through the space-like momentum transfer q = l� l0, with Q2 = �q2, as

x =
Q2

2P · q
, y =

P · q

P · l
, z =

P · Ph

P · q
, � =

2Mx

Q
. (2)

To access the Sivers function we perform a fit of the asymmetry Asin(�h��S)
UT , measured in SIDIS with a nucleon

target transversely polarized with respect to the virtual photon. The Sivers asymmetry Asin(�h��S)
UT can be isolated

from the SIDIS differential cross section through a sin(�h � �S) modulation. The corresponding cross-section can be
expressed in a model-independent way by a set of structure functions [15]:

d�

dx dy dz d�S d�hdP 2
hT

=
↵2

xyQ2

y2

2(1� ")

✓
1 +

�2

2x

◆⇢
FUU,T + "FUU,L

+ sin(�h � �S)|ST |

h
F sin(�h��S)
UT,T + "F sin(�h��S)

UT,L

i
+ . . .

�
(3)

where ST is the covariant spin vector, PhT is the transverse component of the hadron momentum in the final state
and �S , �h are their respective azimuthal angle, as can be seen in fig. 1. The dots in the last term indicates higher
order contributions. We define " as

" =
1� y � 1

4�
2y2

1� y + 1
2y

2 + 1
4�

2y2
(4)

PhT h

FUN,�⇤ =
X

q

H
q(Q2) C [w�⇤ f

q
N D

q
1]

+ YUN,�⇤(Q2
, P

2
hT ) +O(M2

/Q
2)

hard part
convolution

matching Y term

"theoretical cuts”: LO , twist=2, 

~ 1

3

y

z

x

hadron plane

lepton plane

l
l S

Ph

Ph
φh

φS

Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target
rest frame [23]. Ph? and S? are the transverse parts of Ph and S with respect to the photon
momentum.

cover a variety of situations with di↵erent types of power behavior we wish to discuss.

Many of them have been measured in experiment, see [16–21] and the recent review in [22].

Working in the one-photon exchange approximation, we define the photon momentum

q = l � l0 and its virtuality Q2 = �q2. We use the conventional variables for SIDIS

x =
Q2

2P · q
, y =

P · q

P · l
, z =

P · Ph

P · q
, (2.2)

and write M and Mh for the respective masses of the proton target and the produced

hadron h. We take the limit of large Q2 at fixed x, y, z, and throughout this paper we

neglect corrections in the masses of the hadrons or the lepton.

It is convenient to discuss the experimental observables for SIDIS in a frame where P

and q collinear. We define the transverse part Pµ
h? of Pµ

h as orthogonal with respect to the

momenta P and q. Likewise, we define the transverse part Sµ
? of the spin vector Sµ of the

target, as well as its longitudinal projection Sk along Pµ. We further define the azimuthal

angles �h and �S of Pµ
h and Sµ with respect to the lepton plane in accordance with the

Trento conventions [23], as shown in Fig. 1. Covariant expressions for the quantities just

discussed can be found in [14]. Finally, we write �e for the longitudinal polarization of the

incoming lepton, with �e = 1 corresponding to a purely right-handed beam.

The lepton-hadron cross section can then be parameterized as [14]

d�

dx dy dz d�S d�h dP 2
h?

=
↵2

xQ2

y

2 (1 � ")

⇥

⇢
FUU,T + "FUU,L +

p
2 "(1 + ") cos�h F

cos �h
UU + " cos(2�h)F

cos 2�h
UU

+ �e

p
2 "(1 � ") sin�h F

sin�h
LU

+ Sk

p
2 "(1 + ") sin�h F

sin�h
UL + " sin(2�h)F

sin 2�h
UL

�

– 6 –

FIG. 1: Kinematics of a lepton scattering off a polarized hadron, in a frame where with parallel hadron and virtual
photon momenta.

Isolating the structure functions related to the term sin(�h��S) and the unpolarized ones, we obtain the following
asymmetry:

Asin(�h��S)
UT = 2

R
d�Sd�h[d�"

� d�#] sin(�h � �S)R
d�Sd�h[d�" + d�#]

=
F sin(�h��S)
UT,T + "FUT,L

FUU,T + "FUU,L

(5)

In this analysis we neglect the lepton mass and rely on the one-photon exchange approximation. Moreover, in
the expansion in power of ↵0

S of the structure functions we consider terms of ↵0
S (LO) and we include perturbative

corrections up to NLL. Consequently the structure functions in eq. (5) can be written in terms of convolutions of
TMDs in the following way [12]:

FUU,T = C [f1D1] , (6)

FUU,L = O

✓
M2

Q2
,
P 2
hT

Q2

◆
= 0 , (7)

F sin(�h��S)
UT,T = C

"
�
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4

where w(k?,P?) is an arbitrary weighted function which depends on the involved distribution and fragmentation
functions. The structure functions FUU,L is equal to zero when the calculation considers only terms up to order 1/Q.
At the level of accuracy chosen for our analysis, we deem that the effects of the collinear matching term YUU,T can
be neglected.

With these approximations, the Sivers asymmetry can be expressed as the ratio between a Sivers function and the
corresponding unpolarized TMD parton distribution function f1(x, k2?), both convoluted with an unpolarized TMD
fragmentation function D1(z,P 2

?), as in
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This term is present both in the numerator and denominator, but might not cancel if we take into account the integral
of the cross section over at least one of its variable x, y, Q2.

In our study we want to reproduce the shift of TMD distributions caused by a change of Q2. The connection
between different scales is described through evolution equations. In order to follow the usual formalism of TMD
evolution [10, 23], we need to calculate the Fourier transform of TMDs involved in eq. (11). The expression for the
unpolarized TMD distribution and fragmentation functions, written in ⇠T -space are
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(15)

and we introduce the general expression for the derivatives of the Sivers function [19]:
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The structure functions can be then defined as convolutions of these TMDs in ⇠T -space as
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Substituting these Fourier transforms for the structure function we obtain the following expression for the Sivers
asymmetry:
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which will allow to extract the Sivers distribution from experimental data, after choosing an appropriate parametriza-
tion.
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which will allow to extract the Sivers distribution from experimental data, after choosing an appropriate parametriza-
tion.
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(x, Q2) - coverage

hermes

Adolph et al., E.P.J. C73 (13) Airapetian et al., P.R. D87 (13)

Drell-Yan Ito et al., P.R. D23 (81) 604 
Moreno et al., P.R. D43 (91) 
Antreyan et al., P.R.L. 47 (81)

Z production
Abbot et al., P.R.L. 84 (00) 2792 
Affolder et al., P.R.L. 84 (00) 845 
Abazov et al., P.R.L. 100 (08) 102002 
Aaltonen et al., P.R. D86 (12) 052010

● ● ●
●

●
●

■ ■■ ■
■

■
■
■

■
■
■
■

■■
■
■
■

■
■
■
■

■
■

◆
◆◆
◆◆

◆◆◆

◆
◆◆
◆◆

◆◆◆

◆
◆◆
◆◆

◆
◆◆
◆◆

◆
◆◆
◆◆

◆
◆◆
◆◆◆◆

◆
◆◆

◆

10-4 10-3 10-2 10-1 100
100

101

102

103

104

x

Q
2
[G
eV

2
]

( Z @LHC )



FIRST TMD GLOBAL FIT

�44

Number of data points: 8059
Global χ2/dof = 1.55  
 

〈��〉=�� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��

��
���
���
���

��� ��� ���
��� [���]

〈��〉=�� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��

��
���
���
���

〈��〉=��� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��

��
���
���
���

〈��〉=�� ����
〈�〉=�����

��� ��� ���
��� [���]

〈��〉=�� ����
〈�〉=�����

〈��〉=��� ����
〈�〉=�����

〈��〉=�� ����
〈�〉=�����

��� ��� ���
��� [���]

〈��〉=�� ����
〈�〉=�����

〈��〉=��� ����
〈�〉=�����

〈��〉=�� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��

��
���
���
���

〈��〉=��� ����
〈�〉=�����

��� ��� ���
��� [���]

〈��〉=�� ����
〈�〉=�����

���
� = ��� ���

�

��

��

��

��

��

�/
σ
�σ

/�
� �

[�
��

-�
]

��
� = ��� ���

���
� = ���� ���

�

��

��

��

��

��

�/
σ
�σ

/�
� �

[�
��

-�
]

� �� �� ��
��[���]

��
� = ���� ���

� �� �� ��
��[���]

�=���

-��

-�

�

�

��

��

�σ
/�
� �

(�
��
�
��
��
��

)
� � �
��[���]

����� � = ���� ���

�=����

�

�

��

��

��

�σ
/�
� �

(�
��
�
��
��
��

)

� � �
��[���]

����� � = ���� ���

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

SIDIS Drell-Yan Z production

Pavia2016: first fit putting together  
semi-inclusive DIS, Drell-Yan and Z production

•

first unpolarized TMD global fit

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
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Nucleon tomography in momentum space

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

3D DISTRIBUTIONS EXTRACTED FROM DATA

�45

Figure 8. The down quark TMD PDF in b-space(left) and kT -space(right) presented at different values of

x. The color shows the size of the uncertainty relative the value of distribution.

6 Conclusions

We have extracted the unpolarized transverse momentum dependent parton distribution function
(TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper kernel) from Drell-Yan
data. The analysis has been performed in the ⇣-prescription with NNLO perturbative inputs. We
have also provided an estimation of the errors on the extracted functions with the replica method.
The values of TMDPDF and rapidity anomalous dimension, together with the code that evaluates
the cross-section, are available at [45], as a part of the artemide package. We plan to release grids
for TMDPDFs extracted in this work also through the TMDlib [69].

Theoretical predictions are based on the newly developed concepts of ⇣-prescription and op-
timal TMD proposed in ref. [27]. This combination provides a clear separation between the non-
perturbative effects in the evolution factor and the intrinsic transverse momentum dependence.
Additionally, the ⇣-prescription permits the usage of different perturbative orders in the collinear
matching and TMD evolution. For that reasons, the precise values of the rapidity anomalous di-
mension (±1%(4%, 6%) accuracy at b = 1(3, 5) GeV�1) are relevant for any observable that obeys
TMD evolution.

In our analysis, we have included a large set of data points, which spans a wide range of
energies (4 < Q < 150 GeV) and x (x > 10�4), see fig. 1. The data set can be roughly split into
the low-energy data, which includes experiments E288, E605, E772 and PHENIX at RHIC, and
the high-energy data from Tevatron (CDF and D0) and LHC (ATLAS, CMS, LHCb) in similar
proportion. To exclude the influence of power corrections to TMD factorization we consider only
the low-qT part of the data set, as described in sec. 3. A good portion of data is included in the fit
of TMD distributions for the first time, that is the data from E772, PHENIX, some parts of ATLAS
and D0 data. For the first time, the data from LHC have been included without restrictions (the
only previous attempt to include LHC data in a TMDPDF fit is [13], where systematic uncertainties
and normalization has been treated in a simplified manner). We have shown that the inclusion of
LHC data greatly restricts the non-perturbative models at smaller b (b . 2 GeV�1) and smaller x

(x . 0.05), and therefore they are highly relevant for studies of the intrinsic structure of hadrons.
A detailed comparison of fits with and without LHC data has been discussed in sec. 5.

The extracted TMDPDF shows a non-trivial x-dependence that is not dictated only by the
collinear asymptotic limit of PDFs. In particular, we find that the unpolarized TMDPDF is bigger
(in impact parameter space) at larger x, see fig. 7. This indirectly implies a smaller value of the
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Figure 10. Kinematic dependence of
〈
k2
⊥
〉
(x) (a) and of

〈
P 2

⊥
〉
(z) (b). The bands are the 68%

C.L. envelope of the full sets of best-fit curves. The data used in the fit approximately cover the
range 5× 10−3 ! x ! 0.5 and 0.2 ! z ! 0.7.

p → π+ p → π− p → K+ p → K− D → π+ D → π− D → K+ D → K−

Original 5.18 2.67 0.75 0.78 3.63 2.31 1.12 2.27

Normalized 1.94 1.13 0.57 0.29 1.59 0.80 0.47 0.97

Table 12. χ2/d.o.f. for Hermes data with and without normalization to the value of the first bin
in PhT .

shown in figure 10 (a) for
〈
k2
⊥
〉
(x) and figure 10 (b) for

〈
P 2
⊥
〉
(z). The bands are computed

as the 68% C.L. envelope of the full sets of curves from the 200 replicas. Comparison with
other extractions are presented and the legend is detailed in the caption of figure 9.

4.3 Stability of our results

In this subsection we discuss the effect of modifying some of the choices we made in our de-
fault fit. Instead of repeating the fitting procedure with different choices, we limit ourselves
to checking how the χ2 of a single replica is affected by the modifications.

As starting point we choose replica 105, which, as discussed above, is one of the most
representative among the whole replica set. The global χ2/d.o.f. of replica 105 is 1.51. We
keep all parameters fixed, without performing any new minimization, and we compute the
χ2/d.o.f. after the modifications described in the following.

First of all, we analyze Hermes data with the same strategy as Compass, i.e., we
normalize Hermes data to the value of the first bin in PhT . In this case, the global
χ2/d.o.f. reduces sharply to 1.27. The partial χ2 for the different SIDIS processes measured
at Hermes are shown in table 12. This confirms that normalization effects are the main
contribution to the χ2 of SIDIS data and have minor effects on TMD-related parameters.
In fact, even if we perform a new fit with this modification, the χ2 does not improve
significantly and parameters do not change much.

We consider the effect of changing the normalization of the Z-boson data: if we increase
the normalization factors quoted in the last row of table 4 by 5%, the χ2 quoted in the last
row of table 9 drops to 0.66, 0.52, 0.65, 0.68. This effect is also already visible by eye in
figure 8: the theoretical curves are systematically below the experimental data points, but
the shape is reproduced very well.
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4.3 Stability of our results

In this subsection we discuss the effect of modifying some of the choices we made in our de-
fault fit. Instead of repeating the fitting procedure with different choices, we limit ourselves
to checking how the χ2 of a single replica is affected by the modifications.

As starting point we choose replica 105, which, as discussed above, is one of the most
representative among the whole replica set. The global χ2/d.o.f. of replica 105 is 1.51. We
keep all parameters fixed, without performing any new minimization, and we compute the
χ2/d.o.f. after the modifications described in the following.

First of all, we analyze Hermes data with the same strategy as Compass, i.e., we
normalize Hermes data to the value of the first bin in PhT . In this case, the global
χ2/d.o.f. reduces sharply to 1.27. The partial χ2 for the different SIDIS processes measured
at Hermes are shown in table 12. This confirms that normalization effects are the main
contribution to the χ2 of SIDIS data and have minor effects on TMD-related parameters.
In fact, even if we perform a new fit with this modification, the χ2 does not improve
significantly and parameters do not change much.

We consider the effect of changing the normalization of the Z-boson data: if we increase
the normalization factors quoted in the last row of table 4 by 5%, the χ2 quoted in the last
row of table 9 drops to 0.66, 0.52, 0.65, 0.68. This effect is also already visible by eye in
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FIG. 2: Global distribution of �2/d.o.f. values obtained from the minimization of 200 replicas.

Points Parameters �2 �2/d.o.f.
118 14 110.19± 10.84 1.06± 0.10

TABLE II: Number of included data points, of free parameters and values of �2. The difference between the number
of data points and free parameters gives the total degrees of freedom.

pions [26] and the DSS07 NLO set for kaons [27]. Each minimization starts from a different set of initial parameters
chosen in a reasonable interval, to explore the parameters space without being too much constrained by their initial
choice, while at the same time avoiding area of no physical significance.

As said in the previous section, the Compass and Hermes measurements of the asymmetry are presented as function
of x, z and PhT . However, these three groups of data refer to the same measurements, only projected on different
observables. Therefore we decided to fit only one of these projections in order to avoid considering fully correlated
measurements. We chose to analyze the x sets of data, given that we are mainly interested in the x-dependence of
the Sivers function.

Adopting this configuration for our minimization, we considered 118 data points of the data sets projected on
x which, after being reduced by 14 free parameters, gives a total number of degrees of freedom equal to 104. We
obtained a good agreement between the experimental measurements of Asin(�h��S)

UT as a function of x and our theoretical
prediction, with an overall value of �2/d.o.f.= 1.06 ± 0.12aggiorna. The uncertainties are estimated from the 68%
confidence level obtained through the replica methodology. The global results of our minimization are summarized in
Table II and the histogram of the distribution of �2/d.o.f. values obtained from the replica methodology is shown in
Fig. 2.

In Table III we report the value of total �2 and the number of data points analyzed, distinguished according to their
experimental collaboration. Instead, Table IV present the same quantities, separated with respect to the detected
hadron in the final state. We observe that our parametrization is able to describe very well the x projection of
Compass’17 data, even if they have smaller uncertainties compared with the other data sets. This could be probably
due to their Q2 binning, which is much finer compared to the other data sets considered. Another possible reason
is that the Compass’17 data do not identify the type of hadron in the final state, only their charge; they could be

Hermes Compass’09 Compass’17 JLab
�2 47.60± 7.29 30.10± 4.75 31.10± 5.98 5.01± 1.54

Points 30 32 50 6

TABLE III: Values of obtained total �2 and uncertainties, and corresponding number of data points, separated
according to their experimental collaborations.

analysis of statistical error 
with replica method (200) 
68% confidence level
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VII. APPENDIX: PLOTS OF BEST FIT RESULTS FOR SIVERS ASYMMETRIES.
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FIG. 6: Hermes Sivers asymmetries from SIDIS off a proton target (H) with production of ⇡+, ⇡0, ⇡�, K+, K� in
the final state, presented as function of x, z, PhT .
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FIG. 7: Compass’09 Sivers asymmetries from SIDIS off a deuteron target (6LiD) with production of ⇡+, ⇡�, K+,
K� in the final state, presented as function of x, z, PhT .
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FIG. 8: Compass’17 Sivers asymmetries from SIDIS off a proton target (NH3) with production of positive hadrons
h+, presented as function of x, z, PhT and divided in four different Q2 bins.
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FIG. 3: The function xf?(1)
1T as a function of x calculated for the up (a,b), down (c,d) and strange (e,f) quark at the

scale Q0 = 1 GeV. The uncertainty bands shown in (a),(c) and (e) are created using the 68% C.L. obtained with the
replica methodology. In the panels (b),(d) and (f) we show all the curves corresponding to the 200 replica fits.
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D. Graphical comparison of different extraction.

We present the comparison between our extraction of the first moment of the Sivers function with the results
obtained by other research groups, in Fig. 4 for the up quarks and in Fig. 5 for the down quarks. We denote with
PV11 the result of the Pavia group in 2011 [16], with TC18 the reference fit of Torino-Cagliari [20] results and with
PV18 our most recent results. The data were presented calculated for different values of Q2, the curves of TC18 were
calculated at Q2 = 1.2 GeV2, the results of Pavia at Q2 = 1 GeV2, while the curve corresponding to EIKV were
presented in the original publication at Q2 = 2.4 GeV2. In our plot, however we calculated again the EIKV curve at
Q2 = 1 GeV2 adding also the estimate for the error bands, which were not present originally. In some cases we had
to rearrange the final results, so that they referred to the same quantity xf?(1)

1T ; for example in the case of TC18 the
final results were presented in terms of �Nf (1)

q/p"(x) = �fq?(1)
1T (x), while EIKV discussed the Qiu-Sterman function

Tq,F (x, x,Q).
From the plots, we can conclude that our current analysis is in good agreement with the previous extraction of the

Sivers function from similar data sets of polarized SIDIS.

EIKV

PV11

TC18

PV18

Printed by Wolfram Mathematica Student Edition

FIG. 4: Comparison of different extractions of the first moment of Sivers distribution as a function of x for up quark.

VI. CONSTRAINTS ON QUARK ANGULAR MOMENTUM.

We attempt to constraint the longitudinal angular momentum Ja of a quark, following a previous exploration
carried out in Ref. [16]. This is possible if we assume a connection between Ja and the Sivers distribution measured in
SIDIS. This assumption is based on model calculations and theoretical considerations [21]riformula. In the following
we demonstrate that this assumption is compatible with the present data and we give an estimate of Ja.

The total longitudinal angular momentum of a parton with flavor a at some scale Q2 can be computed as a specific
moment of generalized parton distribution functions (GPD) [32]:

Ja
�
Q2

�
=

1

2

Z 1

0
dxx

⇥
Ha

�
x, 0, 0;Q2

�
+ Ea

�
x, 0, 0;Q2

�⇤
. (51)

While the GPD Ha
�
x, 0, 0;Q2

�
corresponds to the collinear PDF fa

1 (x;Q
2), the forward limit of the GPD

Ea
�
x, 0, 0;Q2

�
is not related to any known collinear PDF [28], making it impossible to determine this function

16
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FIG. 5: Comparison of different extractions of the first moment of Sivers distribution as a function of x for down
quark.

in forward limit experiments [37]. Then, to determine the total angular momentum Ja it is necessary to make some
kind of assumption to constrain Ea. The only model-independent constraint is given by the sum rule sembra fuori
posto dopo aver detto che non ci sono constraints, riformula?

X

q

eqv

Z 1

0
dxEqv (x, 0, 0) =  (52)

where  denotes the anomalous magnetic moment of the original nucleon. Following the general idea of the previous
exploration, we assume the following relation between Ja and the first moment of the Sivers distribution:

f?(0)a
1T

�
x;Q2

L

�
= �L(x)Ea

�
x, 0, 0;Q2

L

�
(53)

where L(x) is a flavor-independent function, representing the effect of the QCD interaction of the outgoing quark
with the rest of the nucleon, called "lensing function" [22]. We adopt the following functional form for the lensing
function:

L(x) =
K

(1� x)⌘
(54)

with K and ⌘ as free parameters. The zeroth moment of the Sivers distribution is defined as

f?(0)a
1T

�
x;Q2

�
=

Z
d2k?f

?
1T

�
x,k2

?;Q
2
�

(55)

which gives the explicit expression:
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FIG. 3: The function xf?(1)
1T as a function of x calculated for the up (a,b), down (c,d) and strange (e,f) quark at the

scale Q0 = 1 GeV. The uncertainty bands shown in (a),(c) and (e) are created using the 68% C.L. obtained with the
replica methodology. In the panels (b),(d) and (f) we show all the curves corresponding to the 200 replica fits.
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tomography of transversely polarized proton
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the Transversity function

U L T

U f1 h1⊥

L g1L h1L⊥

T f1T⊥ g1T h1  h1T⊥

quark polarization
nu

cl
eo

n 
po

la
ri

za
tio

n

PDFs  @twist=2 =1f
pT

x

=1h � chiral-odd → suppressed

1st Mellin moment (tensor charge) not directly accessible in LSM 

    → low-energy footprint of BSM physics at higher scale ?

h1 from first global fit of SIDIS + p-p data Radici and Bacchetta,  
P.R.L. 120 (18) 192001
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the  di-hadron  mechanism 

collinear framework

- h1 probed as PDF 

- factorization theorems for all hard processes 
   → universality of  h1 H1<  mechanism

)

- the di-hadron mechanism:  IFF  H1<       
h1

h2

q

2-hadrons semi-inclusive production

transversity is chiral-odd → need a chiral-odd partner

)
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proton 
deuteron

lepton

positron

π+π− 

π+K− 

K+K−

electron

π+π−

H
^
1

h1 H
^
1

π+π−
e+e−  

SIDIS 

p  p↑   
proton

proton

advantages of  di-hadron mechanism

factorization theorems for all hard processes

hermes

run 2006  
(s=200 GeV2)

Adamczyk et al. (STAR),  
P.R.L. 115 (2015) 242501

Airapetian et al.,  
JHEP 0806 (08) 017

Adolph et al., P.L. B713 (12)
Braun et al., E.P.J. Web Conf. 85 (15) 02018

Vossen et al., P.R.L. 107 (11) 072004

data used in the global fit

f1 ⇥ h1 ⇥ H
^
1

run 2011  
(s=500 GeV2)

Adamczyk et al. (STAR),  
P.L. B780 (18) 332
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the  phase space

hermes

- limited to mostly medium/high x 
- guess low-x behavior (relevant for calculation of tensor charge - see later)
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currently,   only  LO  analysis

u

u

u

d du

X

RT

π+ π−

d

ud du

X

-RT

π+π−
H

^u
1 = �H

^ d
1

H
^ q
1 = �H

^ q
1

D
q
1 = D

q
1

A
sin(�R+�S)
UT (x, z,M2

h) / � |R|
Mh

P
q e

2
q h

q
1(x) H

^q
1 (z,M2

h)P
q e

2
q f

q
1 (x) D

q
1(z,M

2
h) π+π− 

tree level

isospin symmetry

charge conjugation}

access only  q-q = qv , q=u,d
valence flavors in SIDIS AUT

−



theoretical  uncertainties

- quark D1q is well constrained by e+e− → (π+π−) X   (Montecarlo)

we don’t know anything about the gluon D1g

our choice:    set D1g (Q0) =
0
D1u (Q0) / 4
D1u (Q0) {

deteriorates our e+e− fit as  χ2/dof =
1.69 
1.81 
2.96 

1.28 
1.37 
2.01 

background ρ       channels

{

unpolarized Di-hadron Fragmentation Function   D1

- gluon D1g is not constrained by e+e− → (π+π−) X  (currently, LO analysis)

- no data available yet for  p p → (π+π−) X  

~  1-hadron  D1g(Q0) 



statistical  uncertainty

automatically accounts for correlations

the bootstrap method

- shift each exp. point by Gaussian noise within exp. variance 
- create sets of virtual points to be fitted: 50, 100, 200 sets… until average 
   and standard deviation reproduce original exp. points (here, 200x3=600) 
-  exclude largest and smallest 5% => 90% band
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choice  of  functional  form

2|hq
1(x,Q

2)|  2 SBq(x,Q2) = |fq
1 (x,Q

2) + gq1(x,Q
2)|

Soffer Bound

MSTW08      DSSV

hqv
1 (x;Q2

0) = F qv (x)
h
SBq(x) + SB

q̄
(x)

i

functional form whose Mellin transform can be computed analytically 
and complying with Soffer Bound at any x and scale Q2

Cebn(x)  Cebyshev polynomial
10 fitting parameters

F qv (x) =
Nqv

maxx[|F qv (x)|] x
Aqv [1 +Bqv Ceb1(x) + Cqv Ceb2(x) +Dqv Ceb3(x)]

Soffer Bound ok at any Q2|Nqv |  1 ) |F qv (x)|  1

constrain parameters



constrain parameters :   low-x trend 

lim
x!0

xSBq(x) / xaq

hq
1(x) ⇡ xAq+aq�1x ! 0

Aq + aq >
1

3

tensor charge �q(Q2) =

Z 1

xmin

dxhq�q̄
1 (x,Q2)

for xmin=10-6   from MSTW08

constrain parameters

Accardi and Bacchetta, P.L. B773 (17) 632

Z 1

0
dx g2(x) /

Z 1

0
dx

h1(x)

x
Aq + aq > 1

�q finite  => Aq + aq > 0

small-x dipole picture
Kovchegov & Sievert, arXiv:1808.10354

at Q0 Aq + aq ⇠ 1

“massive” jet in DIS → h1 at twist 3 
violation of Burkardt-Cottingham s.r.

our choice

x ! 0
hqv
1 (x) ⇡ x1�2

q
↵s(Q2)Nc

2⇡

lim
x!0

F qv (x) / xAq }
low-x behavior important

����
Z xmin

0
dx

���� ⇠ 1% of

����
Z 1

xmin

dx

����

Other choices
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Radici and Bacchetta, P.R.L. 120 (18) 192001

Our  first  global  fit

first ever extraction of transversity from 
data of SIDIS and proton-proton collisions

18 data points 4 data points

run 2006  
(s=200 GeV2)

10 independent data points
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���
χ�

probability density function of 
χ2 distribution for 22 d.o.f.

(for χ2/dof = 1 perfect overlap)
χ2/dof = 1.76 ± 0.11



the extracted transversity

up

down

Soffer 
bound

data

uncertainty band from  
90% of 600 replicas 
= max uncertainty on D1g(Q0)
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Comparison with other extractions

global fit

Torino  

Anselmino et al.,  
P.R. D87 (13) 094019

Radici and Bacchetta,  
P.R.L. 120 (18) 192001

TMD  
Kang et al.,  

P.R. D93 (16) 014009

up down
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sensitivity  to  th.  uncertainty

global fit

0
D1g (Q0) = D1u /4

D1u
{

down
sensitive to 

uncertainty on
gluon D1

Radici & Bacchetta,  
P.R.L. 120 (18) 192001

D1g (Q0) = 0
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sensitivity  to  th.  uncertainty

global fit

0
D1g (Q0) = D1u /4

D1u
{

down
sensitive to 

uncertainty on
gluon D1

Radici & Bacchetta,  
P.R.L. 120 (18) 192001

D1g (Q0) = 0
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p−p :  u~d , gluon @LO    but    SIDIS :  u~(8x)d ,  gluon @NLO
need data from target more sensitive to down  (deuteron, 3He)   and

need data from multiplicities in p+p → (ππ)+X
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The  tensor  “charge”  of  the  proton 

  1st Mellin moment of transversity PDF  ⇒  tensor “charge”

�q ⌘ gqT =

Z 1

0
dx

⇥
hq
1(x,Q

2)� hq̄
1(x,Q

2)
⇤

  tensor charge connected to tensor operator

hP, Sp| q̄�µ⌫q |P, Spi = (PµS⌫
p � P ⌫Sµ

p ) �q

= (PµS⌫
p � P ⌫Sµ

p )

Z
dxhq�q̄

1 (x,Q2)

compute on lattice

extract transversity from data with 
transversely polarized protons

lattice δq

pheno δq
  preferably the isovector gT = δu-δd 

(cancellation of “disconnected” diagrams)



Results  for  our global fit 

global fit 
Q2=4

u-d

lattice
Q2=4 GeV2

JAM (Q2=2)

Torino (Q2=1)

TMD  (Q2=10)

isovector tensor charge 1)  “MILC” ’19 

2) PNDME ’18 

3) ETMC ’17 

4) RQCD ‘14 

5) LHPC ‘12 Green et al., P.R. D86 (12)

Bali et al., P.R. D91 (15)

Alexandrou et al., P.R. D95 (17) 114514; 
                       E  P.R. D96 (17) 099906 

Gupta et al., P.R. D98 (18) 034503

Hasan et al., arXiv:1903.06487

Torino, TMD, JAM   from SIDIS data only
� � � � �
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�� = δ�-δ�

SoLID (Q2=10)

Ye et al., P.L. B767 (17) 91



Results  for  our global fit 

shaded area = 90% C.L.
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Alexandrou et al., P.R. D95 (17) 114514; 
                       E  P.R. D96 (17) 099906 

Gupta et al., P.R. D98 (18) 034503

Hasan et al., arXiv:1903.06487

global fit 
Q2=4

JAM (Q2=2)

Torino (Q2=1)

TMD  (Q2=10)

Torino, TMD, JAM   from SIDIS data only

Lin et al., P.R.L. 120 (18) 152502

But if we look also 
at δu and δd …

JAM  includes constraint from “lattice gT”
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Results  for  our global fit 
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no simultaneous compatibility 
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isovector tensor charge 1)  “MILC” ’19 

2) PNDME ’18 

3) ETMC ’17 

4) RQCD ‘14 

5) LHPC ‘12 Green et al., P.R. D86 (12)
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pheno  vs.  lattice  tensor charge 

main problem of  “pheno δq” is extrapolating outside data..

�q =

Z xmin

0
dxhq�q̄

1 +

Z xmax

xmin

dxhq�q̄
1 +

Z 1

xmax

dxhq�q̄
1

constraining “pheno gT”  with “lattice gT”  
as JAM Collaboration did ? P.R.L. 120 (18) 152502,  

arXiv:1710.09858

gTlatt = 1.004 ± 0.057
_

are they compatible?
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lattice

Constraining our global fit with “lattice gT” 

constraining global fit with lattice gT

u

d

u-d
JAM

Torino

TMD
global  

fit

confirm  JAM  results: 
constraining “pheno gT” with “lattice gT” 

at the price of 
incompatibility for δu and δd
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Tension  “pheno” - “lattice” 

statistically  very  unlikely ….

if we constrain our global fit with lattice results for all 
components of tensor charge (up, down, isovector) 
the  χ2  clearly deteriorate

χ2/dof = 1.76 ± 0.11 χ2/dof = 2.29 ± 0.25
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χ�

gTlatt = 1.004 ± 0.057
_

δulatt = 0.782 ± 0.031
_

δdlatt = -0.218 ± 0.026
_

probability density function of 
χ2 distribution for 22 d.o.f. 25 d.o.f.



truncated  tensor  charge  

up down

truncated 
δq[0.0065,0.35]       Q2 = 10

Radici & Bacchetta,  
P.R.L. 120 (18) 192001

Kang et al.,  P.R. D93 (16) 014009

3) global fit ’17

5) “TMD fit” 

2) global fit + constrain gT

1) global fit + constrain gT , δu , δd
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expect stability 
when integrating  

on x-range of  
exp. data…



Adolph et al., P.L. B713 (12)

Compass pseudo-data
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statistical error  ~  0.6  x  [ error in 2010 proton data ] 
    <A>  =  average value of replicas in previous global fit

pseudodata

add to data of our global fit  
a new set of SIDIS pseudo-data for deuteron target

study impact on precision of previous global fit

arXiv:1812.07281
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Adding  Compass  pseudodata

range  [0.0065,  x  , 0.28]

d

u pseudodata

global fit + pseudodata

global fit  

deuteron target 
→ better precision on down
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Adolph et al., P.L. B713 (12)

CLAS12 pseudo-data

pseudodata C12-12-009

add to data of our global fit 
a new set of SIDIS pseudo-data for proton target

study impact on precision 
of published global fit
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hermes

Airapetian et al.,  
JHEP 0806 (08) 017
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Figure 27: The projected statistical error for data on a hydrogen target (100 days of
HD-Ice) for the target asymmetry Asin φR sin θ

UT in (z, Mππ, x). The band represent the
spread in predictions for three different models for h1(x) from Fig. 6.

compared to nuclear targets (NH3, ND3) is its superior dilution factor, which is crucial
for studies of transverse momentum dependences.

Analysis of already existing electroproduction data from CLAS with unpolarized
and longitudinally polarized targets has shown that JLab 6 GeV data are consistent
with the PYTHIA MC and proposed measurements are feasible.

Beam Request

We ask the PAC to award 110 days of beam time for a dedicated high
statistics SIDIS experiment with a transversely polarized target.

The measurement of the target SSA in hadron pair production off a transversely
polarized proton would allow precision measurements of flavor contribution of the
underlying transversity PDF.
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γp⇒ J/ψp

5-quark	bound	state						or							Hadronic molecule

JLAB	experiment	E12-12-001

Search	for	hidden	charmed	pentaquarks and	study	
of	gluonic structure	of	the	nucleon

Experiment	E12-12-001	measures	J/y production	on	the	proton	near	threshold	– will	verify	existence	of	
the	charmed	pentaquarks and	will	study	the	gluon	field	of	the	nucleon
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Adding  CLAS12  pseudodata

proposal C12-12-009
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SIDIS

pp collisions

PRELIMINARY

22 data points

run 2006  
(s=200 GeV2)

10 indep.  
data points

probability density function of 
χ2 distribution for 54 d.o.f.

(for χ2/dof = 1 perfect overlap)
χ2/dof = 2.12 ± 0.09

add to data of our global fit 
the set of STAR data at s=500 GeV2 Adamczyk et al. (STAR),  

P.L. B780 (18) 332

run 2011  
(s=500 GeV2)

32 indep.  
data points
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PRELIMINARY

global fit

global fit + STAR s=500 data  

Radici and Bacchetta,  
P.R.L. 120 (18) 192001

Soffer bound

down

���� ���� ��� ��� �

-���

-���

���

���

�

� ��
�-�

-

��= ��� ����

basically not modifiedup

more precise and fully positive 
→  positive δd  
→ smaller gT = δu-δd !
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unexpected opposite trend :
need h1 for sea quarks ?



•

Conclusions 

• adding Compass and CLAS12 SIDIS 
pseudodata increases precision of 
down and up, respectively

• NO simultaneous compatibility with 
lattice for tensor charge in up, down, 
and isovector channels                             

• first global fit for chiral-odd transversity       

• adding STAR s=500 data gives 
puzzling results: need sea quarks ?

• first extraction using unpolarized 
TMD f1 & D1 extracted from global 
fit of data in a consistent TMD 
framework                

• similar to other extractions but more 
realistic description of uncertainties                

Sivers Transversity

• tomography of transversely polarized 
proton                
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Conclusions 

• adding Compass and CLAS12 SIDIS 
pseudodata increases precision of 
down and up, respectively

• NO simultaneous compatibility with 
lattice for tensor charge in up, down, 
and isovector channels                             

ultimate resource: 
EIC

• first global fit for chiral-odd transversity       

• adding STAR s=500 data gives 
puzzling results: need sea quarks ?
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• first extraction using unpolarized 
TMD f1 & D1 extracted from global 
fit of data in a consistent TMD 
framework                

• similar to other extractions but more 
realistic description of uncertainties                
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Sivers Transversity

• tomography of transversely polarized 
proton                


