Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

PacificSpin2019 @ Miyazaki, Japan 2019-August-29

Kenichi Nakano

Tokyo Tech

Outline

1. Introduction

- Sivers function of anti-quarks
- 2. Measurement at E1039/SpinQuest
 - Measurement method
 - Anticipated sensitivity
- 3. Experimental status
 - Setups of target & spectrometer
 - Schedule toward data taking
- 4. Summary

Sivers Function: $f_{1T}^{\perp}(x, k_T)$

One of the eight Transverse-Momentum-Dependent (TMD) PDFs

			Parton spin	
		U	\mathbf{L}	Т
Nucleon	U	Density f_1		Boer-Mulders h_1^\perp
spin	\mathbf{L}		$\operatorname{Helicity} g_1$	Worm gear #2 h_{1L}^{\perp}
	Т	Sivers f_{1T}^{\perp}	Worm gear $#1 g_{1T}$	Transversity h_1 &
				$\text{Pretzelosity} \ h_{1T}^\perp$

 Correlation between the nucleon spin (S) & the parton transverse momentum (k_T)

Sivers Function of Anti-Quarks

Importance of Anti-Quarks

▶ In proton spin puzzle: $rac{1}{2} = rac{1}{2}\Delta\Sigma + J_G + L_q + L_{ar{q}}$

- The sea-quark orbital angular momentum is expected to be a major part of the missing spin
- ▶ Non-zero Sivers function of anti-quarks promises $L_{\bar{q}} \neq 0$!

Connection to Unpolarized PDF

• Light anti-quark flavor asymmetry: $\bar{d}(x)/\bar{u}(x)$

Meson cloud model ... PRD58, 092004 (1998)

- $Desirem |p
 angle = (1-a-b)|p_0
 angle + a|N\pi
 angle + b|\Delta\pi
 angle$
- $\,\,\triangleright\,\,\, {
 m It\ predicts\ the\ large\ } ar{d}(x)/ar{u}(x)\ {
 m asymmetry\ }$
- ▶ We could reach an unified understanding about the Sivers function, the OAM & the $\bar{d}(x)/\bar{u}(x)$ asymmetry

11

11

u

u

p-

Measurement at E1039/SpinQuest

Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

Proton-Induced Drell-Yan Process

Cross section at LO

$$\begin{split} \frac{d^2\sigma}{dx_{beam}dx_{target}} &= \frac{4\pi\alpha^2}{9x_{beam}x_{target}} \frac{1}{s}\sum_{i=u,d,\cdots} e_i^{\ 2} \cdot \\ & \{q_i(x_{beam})\bar{q}_i(x_{target}) + \bar{q}_i(x_{beam})q_i(x_{target})\} \end{split}$$

- [▷] "q(x_{beam}) q
 (x_{target})" survives @ forward rapidity
 [▷] q w/ x_{beam} & q
 w/ x_{target} are distinguishable event-by-event
- Proton & deuteron as targets
 - ▷ Flavor separation $(\bar{u} \text{ vs } \bar{d})$ based on the proton-neutron isospin symmetry
 - Polarized NH₃ & ND₃ materials

Sivers Asymmetry in Drell-Yan Process

▶ p + N Drell-Yan process with transverse target polarization (\vec{S}_T)

 $\triangleright \phi_S$: Azimuthal angle of target spin w.r.t. hadron plane

• f_{1T}^{\perp} -related structure function

$$\sigma \sim F_{UU}^1 + S_T F_{UT}^1 \sin \phi_S$$

 $F_{UT}^1 = -\mathcal{C} \left[rac{ec{q}_T \cdot ec{k}_{T,target}}{q_T M_p} f_1(x_{beam}, ec{k}_{T,beam}^2) f_{1T}^{\perp}(x_{target}, ec{k}_{T,target}^2)
ight]$

 $\triangleright \ \mathcal{C}$: convolution over $\vec{k}_{T,beam}$ & $\vec{k}_{T,target}$

Transverse Single Spin Asymmetry (TSSA): $A_{UT}^{\sin \phi_S}(x_{target})$

- $\triangleright N(x_{target}, \phi_S)$: measured yields of Drell-Yan process
- \triangleright Fourier projection of N on $\sin \phi_S$ modulation

$$A_{UT}^{\sin \phi_S}(x_{target}) \equiv rac{2}{f \left|S_T
ight|} rac{\int d\phi_S rac{dN(x_{target},\phi_S)}{d\phi_S} \sin \phi_S}{N(x_{target})} = rac{F_{UT}^1}{F_{UU}^1}$$

- rightarrow f: Dilution factor for the ratio of polarizable nucleons
- $\triangleright \ \text{ Relation to } f_{1T}^{\perp,\bar{q}}(x)$

$$\frac{F_{UT}^1}{F_{UU}^1} \sim \frac{f(x_{beam}) \cdot f_{1T}^{\perp,\bar{q}}(x_{target})}{f(x_{beam}) \cdot \bar{f}(x_{target})}$$

Assumption for simplicity here: quark having x_{beam} at beam & anti-quark having x_{target} at target

Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

Anticipated Sensitivity of E1039/SpinQuest

Conditions

- > Two years of data taking
- ▷ $NH_3:ND_3 = 50\%:50\%$ in time
- > Details in the E1039 proposal
- $\blacktriangleright \text{TSSA:} A_{UT}^{\sin \phi_S} = A_N$
 - $ho~~{
 m Measurement}~{
 m accuracy}~\delta_{A_N}\sim 0.04$
 - $^{>}\,\, {
 m Two} \,\, {
 m predictions} \,\, {
 m of} \, {
 m A}_{N} \,\, {
 m of} \,\, {
 m NH}_{3}$
 - ▷▷ Calculations based on SIDIS data
 - ▷ Blue line takes into account the Collins-Soper-Sterman scale evolution
- Aim to observe non-zero anti-quark Sivers asymmetry!!

Phys. Rev. D88, 034016 (2013)

Eur. Phys. J. A39, 89 (2009)

Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

Experimental Status

FNAL-E1039/SpinQuest Collaboration

At Collaboration Meeting on March 7, 2019

- ▶ 15 institutions at present
- Spokespersons:

Kun Liu <liuk@fnal.gov> (LANL) & Dustin Keller <dustin@jlab.org> (UVA)

https://spinquest.fnal.gov

Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

E1039/SpinQuest Timeline

Year	Month	Event	
2018	05	Granted Stage-2 approval from Fermilab	
		Decommissioned E906/SeaQuest components	
2019	06	Transfered the pol. target from UVA to Fermilal Commission all components using cosmic rays	
	Now		
	Winter	Commission the whole system using proton beam	
		Start the data taking	
		\Downarrow Run for two years	
2021	Winter	Finish the data taking	

• We are considering quicker physics topics such as Transverse Single Spin Asymmetry (TSSA) of J/ψ production

- $arphi \ q + ar{q} \gg g + g$ under E1039/SpinQuest kinematics
- $\,\triangleright\,\,$ Sensitive to the Sivers function of anti-quarks and partly gluons

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - \triangleright 4 sec for SpinQuest
 - ▷ 56 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - ▷ Interval: 19 nsec (53 MHz)
 - \triangleright 4 × 10¹² protons in 4 sec

Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

E1039/SpinQuest Spectrometer

- ► Targets: transversely-polarized NH₃ & ND₃
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

Measurement of Polarized Drell-Yan Process at FNAL E1039/SpinQuest

► Typical Drell-Yan event

hinspace Muon momenta $\sim 40~{
m GeV}/c$

Detection of dimuons

- Trigger with hodoscopes at Stations 1-4
 - >> ×7-finer hodoscopes will be installed at Stations 1 & 2 (width = 1 & 2 cm) for better random-background rejection and dark-photon search
- > Tracking with drift chambers at Stations 1-3
- Muon identification with drift tubes at Station 4
- $^{
 m arphi}$ Resolution: $dM/M \lesssim 10\%$ (dominated by the multiple scattering in FMag)

Beamline & Shielding

- Major modifications around target
 - More radiation shielding under new design
 - \triangleright New cryo platform for target infrastructure
 - New location of target cave (300 cm upstream of FMag)
 - New collimator on beamline
- Special thanks to Fermilab accelerator division

► NM4: looking upstream

- Beam collimator
- ▷ Target cave
- Rad. shielding
- Cryo platform

Polarized Targets

- Specification
 - Solid NH₃ & ND₃
 - $\,\triangleright\,\,$ Magnetic field: B=5 T with $dB/B<10^{-4}$
 - \triangleright Size: L 80 mm, ϕ 40 mm

Material	Density	Dilution factor	Packing fraction	Polarization	Interaction length
NH_3	0.867 g/cm ³	0.176	0.60	80%	5.3%
ND_3	1.007 g/cm^3	0.300	0.60	32%	5.7%

▶ New polarized-target construction ... massive efforts by LANL & UVA

- \triangleright Change the field direction
- Modify & insert 1K refrigerator
- New device for cryostat
 - ▷▷ LHe pumps for high cooling capacity
 - ▶▶ He liquefier for liquid helium recirculation
- New device for polarization
 - ▶▶ High power microwave source
 - ▷▷ NMR system

- Three material cells (+ one spare)
 - ▷ NH₃, ND₃ & Empty
 - Target materials will be replaced every ~10 days due to radiation damage
- Polarization
 - Via DNP
 - \triangleright >90% for NH₃

- Flipped per day
- Performance under the beam radiation?
 - $\triangleright 4 \times 10^{12}$ protons in 4 sec
 - \triangleright Feasible based on heat-deposit simulation
 - $\,\triangleright\,$ To be tested in the beam commissioning

Summary

- ► The Sivers function of anti-quarks
 - ▷ Not well known, since not well separated from quark in SIDIS
 - $\,\triangleright\,\,$ Could be a "Smoking Gun" evidence for $L_{ar q}
 eq 0$
- E1039/SpinQuest at Fermilab
 - Measure TSSA of proton-induced Drell-Yan process
 - Use transversely-polarized NH₃ & ND₃ targets
 - ho~ Anticipate the measurement accuracy $\delta_{A_N} \sim 0.04~{
 m at}~0.1 \lesssim x \lesssim 0.3$
 - \triangleright Extract the Sivers functions of $\bar{u} \& \bar{d}$ separately
- Preparation for the data taking
 - $\,\triangleright\,\,$ Commission all components using cosmic rays and then the proton beam
 - Start the data taking this winter for two years