Measurement of the neutron electric-to-magnetic form factor ratio at high momentum transfer

Michael Kohl <kohlm@jlab.org> * for the SBS collaboration

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Supported by DOE DE-SC0013941 and FY2018 JSPS Invitational Fellowship (Long-term)

- Fundamental quantities describing spatial nucleon structure
- Neutron electric form factor least known, limited to Q² < 3.4 (GeV/c)²
- Measurements of G_{En} in high Q² range provide important insight
 - Complete set of form factors in region with small pion cloud contributions
 - Separate isoscalar, isovector form factors, allow separation of up, down quark contributions (neglecting strangeness)
 - Directly sensitive to up and down quark distributions in quark core
 - Model-independent extraction of neutron infinite-momentum frame charge density [Miller (2007); Venkat et al. (2010)]
 - Important comparisons to QCD-based calculations
 - Lattice QCD: isovector form factor (e.g. G_{Ep}-G_{En}) cancels disconnected diagrams
 - Region of interest for Dyson-Schwinger Equation calculations

Extending the Q² range of form factors

Reach extended by Super-BigBite Spectrometer (SBS) in Hall A:

Use high luminosity + open geometry + GEM detectors

Pushes G_E^p/G_M^p, G_Eⁿ, G_Mⁿ to high Q² (>10 GeV²) Allows for flavor decomposition to distance scales deep inside the nucleon

The SBS (form factor) program

Taking advantage of large acceptance and high luminosity

E12-09-019: Measurement of G_{Mn}/G_{Mp} to $Q^2 = 13.5 (GeV/c)^2$ Unpolarized deuterium target: D(e,e'n)/D(e,e'p) cross section ratio Installation will probably begin in May of 2020

E12-17-004: Measurement of G_{En}/G_{Mn} at $Q^2 = 4.5 (GeV/c)^2$ Unpolarized deuterium target: D(e,e'n) polarization transfer Planned to be run in combination with E12-09-019

E12-09-016: Measurement of G_{En}/G_{Mn} to $Q^2 = 10 (GeV/c)^2$ Polarized helium-3 target: ³He (e,e'n) polarized beam and target

E12-07-109: Measurement of G_{Ep}/G_{Mp} to $Q^2 = 12 (GeV/c)^2$ Unpolarized hydrogen target: H(e,e'p) polarization transfer

Additionally: SIDIS / TMD

E12-09-018: SIDIS Transverse single-spin asymmetries ${}^{3}\text{He}(e,e'h)X$ (h= $\pi^{\pm,0}$, K[±]) PR12-15-006: Tagged DIS A(e,e'N) for effective neutron and meson targets

The SBS (form factor) program

Taking advantage of large acceptance and high luminosity

E12-09-019: Measurement of G_{Mn}/G_{Mp} to $Q^2 = 13.5 (GeV/c)^2$ Unpolarized deuterium target: D(e,e'n)/D(e,e'p) cross section ratio Installation will probably begin in May of 2020

E12-17-004: Measurement of G_{En}/G_{Mn} at $Q^2 = 4.5 (GeV/c)^2$ Unpolarized deuterium target: D(e,e'n) polarization transfer Planned to be run in combination with E12-09-019 "GEn-RP"

E12-09-016: Measurement of G_{En}/G_{Mn} to $Q^2 = 10$ (GeV/c)² Polarized helium-3 target: ³He (e,e'n) polarized beam and target

E12-07-109: Measurement of G_{Ep}/G_{Mp} to $Q^2 = 12 (GeV/c)^2$ Unpolarized hydrogen target: H(e,e'p) polarization transfer

Additionally: SIDIS / TMD

E12-09-018: SIDIS Transverse single-spin asymmetries ${}^{3}\text{He}(e,e'h)X$ (h= $\pi^{\pm,0}$, K[±]) PR12-15-006: Tagged DIS A(e,e'N) for effective neutron and meson targets

No free neutron target ...

Use ³He as a polarized neutron target

Account for nuclear structure and "FSI"

Gⁿ_E in absence of a free neutron target

No free neutron target \rightarrow elastic and quasi-elastic scattering

Nuclear corrections (FSI, MEC, ...)

Smallness of Gⁿ_E does not allow L-T sep. of d(e,e'n) or d(e,e')–d(e,e'p)

Gⁿ_E in absence of a free neutron target

No free neutron target \rightarrow elastic and quasi-elastic scattering

Nuclear corrections (FSI, MEC, ...)

Smallness of Gⁿ_E does not allow L-T sep. of d(e,e'n) or d(e,e')–d(e,e'p)

Lepton-nucleon scattering

 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

- Lepton-lepton scattering: $-iM = \bar{u}(k')(ig_e\gamma^{\mu})u(k)\left(-i\frac{g_{\mu\nu}}{a^2}\right)\bar{u}(p')(-ig_e\gamma^{\nu})u(p)$ $k' = (E_3, \mathbf{p_3})$ $k = (E_1, \mathbf{p_1})$ Lepton-nucleon scattering: $q = (\nu, \mathbf{q}) \qquad \qquad \mathbf{p} = (M, \mathbf{0})$ $-iM = \bar{u}(k')(ig_e\gamma^{\mu})u(k)\left(-i\frac{g_{\mu\nu}}{a^2}\right)\bar{u}(p')(-ig_e\Gamma^{\nu})u(p)$ Nucleon vertex factor (current) $p' = (E_4, \mathbf{p}_4)$ $\Gamma^{\nu} = \gamma^{\nu} F_1(q^2) + i\sigma^{\nu\alpha} \frac{q_{\alpha}}{2M} F_2(q^2).$ Dirac (F_1) and Pauli (F_2) "form factors" $Q^2 = -q^2 \qquad \tau = \frac{Q^2}{4M^2}$ $G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$ Electric and magnetic "Sachs" form factors
- Spin dependent, polarized cross section: no more averaging over initial and summing over final spins in the matrix element leads to interference terms

Nucleon form factors and polarization

Double polarization observable = spin correlation

$$-\sigma_0 \vec{P_p} \cdot \vec{A} = \sqrt{2\tau\epsilon(1-\epsilon)} G_E G_M \sin\theta^* \cos\phi^* + \tau \sqrt{1-\epsilon^2} G_M^2 \cos\theta^*$$

Asymmetry ratio ("Super ratio") $\frac{P_{\perp}}{P_{\parallel}} = \frac{A_{\perp}}{A_{\parallel}} \propto \frac{G_E}{G_M}$ independent of polarization or analyzing power

Recoil polarization technique

- Use dipole field for spin precession to rotate P₁ and P_n
- Applicable to protons and neutrons

Polarimetry

Neutron polarimetry:

Elastic / Proton-Recoil (PR): $np \rightarrow np$ Charge Exchange (CE) $np \rightarrow pn$

 Strong LS interaction energy allows hadron polarization measurements with large analyzing powers

- Analyzing power forwardpeaked and decreasing with higher energy
- Normal polarization causes left-right asymmetry
- Sideways polarization causes top-bottom asymmetry

Experimental technique

- Final-state neutron $P_x / P_z \rightarrow G_{En} / G_{Mn}$ (precess $P_z \rightarrow P_v$ in dipole magnetic field)
- Liquid D₂ target (10 cm), 40 µA polarized electron beam (P=80%) Luminosity L = 1.26×10^{38} cm⁻² s⁻¹
- Measure double-polarized ${}^{2}H(\overrightarrow{e}, e'\overrightarrow{n})p$ $P_{x} = -hP_{e}\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_{e}}{2}G_{E}G_{M}}{G_{E}^{2}+\tau G_{M}^{2}(1+2(1+\tau)\tan^{2}\frac{\theta_{e}}{2})}$ $P_{y} = 0$ $P_z = hP_e \frac{2\tau\sqrt{1+\tau} + (1+\tau)^2 \tan^2 \frac{\theta_e}{2} \tan \frac{\theta_e}{2} G_M^2}{G_F^2 + \tau G_M^2 (1+2(1+\tau) \tan^2 \frac{\theta_e}{2})}$ $\frac{P_x}{P_z} = \frac{1}{\sqrt{\tau + \tau(1+\tau)\tan^2\frac{\theta_e}{2}}} \cdot \frac{G_E}{G_M}$
- **BigBite electron spectrometer and SBS hadron spectrometer** apart from polarimeter, identical to G_{Mn} / G_{Mn} E12-09-019 setup
- SBS Neutron polarimeter: acceptance well matched to electron arm
- Dipole magnet, integrated field $\sim 2 \text{ Tm}$
- Hadron calorimeter, high p & n efficiency, effective suppression soft background + passive Cu analyzer
 - + GEM charged-particle tracking systems
 - + active CH analyzer and side scintillator planes
- Detecting high-momentum, small angle protons produced by $np \rightarrow pn$ **AND** low-momentum large-angle protons produced by $np \rightarrow np$ scattering

Experimental layout

Engineering layout

SBS Neutron Polarimeter

SBS Neutron Polarimeter

SBS Neutron Polarimeter

 ■ High-momentum forward protons (towards HCAL) after CE np → pn
■ 2 INFN GEM planes
■ 6 UVa GEM planes
■ 1 Cu analyzer

Proton Recoil (PR) Polarimeter

- Low-momentum large-angle recoiling protons after np \rightarrow np
- Active CH analyzer
- 2 sections, one each side of CE Polarimeter
- Each section has:
- 2 UVa GEM planes
- 1 plastic scintillator plane

SBS GEM detectors

Charge-Exchange (CE) Polarimeter:

- ⇒ 2 INFN + 2 UVa layers, in front of Cu analyzer
- 4 UVa layers behind the Cu analyzer

2 INFN GEM layers

UVa: K. Gnanvo, S.Jian, N. Liyanage, A. Rathnayake HU: M. Kohl, M. Rathnayake, T. Gautam INFN: E.Cisbani, P. Musico, R. Perrino, L. Re and many more

10 UVA GEM layers

SBS GEM detector commissioning (UVa)

Commissioning with cosmics in 2019

Spin precession in SBS dipole

Nucleon spin precession calculated in Geant4 with TOSCA field map 48-D48 Dipole Solution Maximum spin transfer $z \rightarrow x \sim 3\%$ Smoothly varying, can be corrected as polarimeter has good position resolution Maximum systematic error on $P_x / P_z \sim 1\%$ $\chi = \frac{2\mu_N}{\hbar c\beta_N} \int_L B.dl$ 48D48: ~2 Tm Analyzer **HCAL** $A(\chi) = \alpha P_e \sqrt{P_x^2 + P_z^2} \sin(\chi - \chi_0)$ $\tan \chi_0 = P_x / P_z \propto G_E / G_M$ Y-Component of Polarisation (%) X Component of Polarisation (%) 5.5 Neutron Momentum (GeV/c) Veutron Momentum (GeV/c 10² 0.015 0.02 0.025 0.03 0.045 0.8 0.035 0.04 0.05 0.7 0.75 0.85 0.95 1 05 0.01 0.65 X-Component Polarization Y-Component Polarization

Nucleon polarimetry: N-N analyzing power

Analyzing power for elastic n-p scattering

Figure of merit: elastic vs. charge exchange²⁴

Calculate efficiency of polarimeter as function of q by Monte Carlo

- A_y for free np→np: JINR fit to p_n and θ_n dependence, scale A_y by 0.5 for ¹²C scattering (agrees with JINR 2016-17 data)
- \blacksquare A_u for np \rightarrow pn on Cu: new 2016-17 measurement from JINR

Geant4 Monte Carlo simulation

FOM study: D. Hamilton (U. of Glasgow)

Rate studies: W. Tireman (Northern Michigan)

- Realistic description of polarimeter components in g4sbs
- Included spin-dependent hadronic processes and precession
- Full quasi-elastic pseudo-data set simulated for expected luminosity
- Two-arm data analysis performed for both CE and PR polarimeter with realistic detector efficiencies and resolutions
- Analyzing power parametrizations based on Ladygin (x0.5) for PR and Dubna results for CE
- Extracted effective analyzing power (due to depolarization), overall efficiency, FOM and statistical uncertainty on polarization components and form factor ratio

Simulated asymmetries

CE Polarimeter with Cu Analyzer

A_y (np → pn) parametrization for Cu based on 2016-17 JINR results

- Polarimeter Efficiency: $\epsilon = 2.3 \times 10^{-2}$
- Effective analyzing power of CE polarimeter: $A_y^{eff} = Dilution \times A_y(np \rightarrow pn) = 0.89 \times 0.12 = 0.11$
- Figure of Merit: FOM = $\epsilon \times (A_y^{eff})^2 = 2.6 \times 10^{-4}$

Simulated asymmetries

PR Polarimeter with Active Analyzer

 $\mathsf{A}^{\mathsf{eff}}_{\mathsf{y}}$ 600 0.04 500 0.02 400 0.00 300 -0.02 200 -0.04 100 -150 -100 -50 -50 150 -150 -100 0 50 100 0 ϕ_{sc}^{n} [degrees]

P = 1 in generator: extract dilution factor and effective analyzing power

A_y (np → np) parametrization for CH based on Ladygin elastic x0.5 (agrees with 2016-17 JINR results)

- Polarimeter Efficiency: $\epsilon = 3.8 \times 10^{-2}$
- Effective analyzing power of PR polarimeter: $A_y^{eff} = Dilution \times A_y(np \rightarrow np) = 0.77 \times 0.06 = 0.046$
- Figure of Merit: FOM = $\epsilon \times (A_y^{eff})^2 = 0.8 \times 10^{-4}$

50

100 150

φ (degrees)

Extracted recoil polarization components

4 comb. beam helicity, SBS dipole polarity — $F(\phi_n) = C\{1 \pm |P_x^*| \sin \phi_n \pm |P_y^*| \cos \phi_n\}$

 $\underline{\qquad} F_{x} = (F_{++} - F_{-+} + F_{+-} - F_{--})/C$

- Solution Unpolarized Distribution -
- Polarized Distributions —
- Simulated 20 million QE e-n events with $P_e = 0.8$, $P_x = 0.19$ and $P_z = 0.52$ (typical values)
- Projected uncertainties consistent with FOM

Projected form factor ratio uncertainty

Summary

- E12-17-004 will measure the ratio of neutron electric to magnetic form factors by quasielastic electron-deuteron scattering with neutron recoil polarimetry
- The SBS Neutron Polarimeter consists of two independent parts:
 - A polarimeter with an active scintillator array analyzer based on n-p scattering (forward neutron, backward proton)
 - A polarimeter with a copper analyzer based on n-p charge exchange (forward proton)
- Simulations for realistic running conditions have been performed within the g4sbs framework (used for other SBS experiments)
- We expect the experiment to run in the early phase of the SBS program (2020-21)

Backup

Analyzing power: JINR Dubna (2016-17)

