Very forward particle productions at LHCf and RHICf

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Yoshitaka Itow (ISEE/KMI, Nagoya University) for the LHCf and RHICf Collaboration

11th Circum-Pan-Pacific Symposium on High Energy Spin Physics, Aug 27 – 30, 2019, ANA Holiday Inn Resort Miyazaki, Japan

Forward production and cosmic rays

Air shower measurements of very high cosmic rays rely on hadronic interaction modeling.

- Need precise knowledge on minimum bias interactions, including forward productions
- They are high-energy and non-pQCD regime. Need collider data and a good phenomenological model.

GZK cut-off confirmed ? But...

- GZK like cut off observed both by AUGER and by TA, but...
- Chemical composition (p or A) ?, yet controversial
- SD and FD energy scales differ.
- Too much ground muons (>factor 2), if proton (AUGER)

Chemical composition and shower Xmax

- Proton primaries : deep penetrating shower (large Xmax)
- Nuclear primaries: quick developing showers (small Xmax)
- Data shows transition from light to heavy primary. Pure p or mixed ?
- Indication of "hot spot" due to proton component ?

UHECR Interactions = Collider Energies

- Need dedicated very forward measurement at hadron colliders
- So far LHCf pp (13, 7, 2.76, 0.9 TeV) and p-Pb(5,8 TeV/n) available
- RHIC provies 0.5 TeV pol pp w/ same pT coverage as LHC
- RHIC also provides various p-A or A-A collisions

Particle productions at LHC (\sqrt{s} =14TeV)

Most of the energy flows into very forward (Particles of $X_F > 0.1$ contribute 50% of shower particles) LHCf/ZDC location can access |n| > 8.4

Gribov-Regge type cosmic ray interaction models

T. Pierog

G(x+,x-,s,b)

- SYBILL2.1 \rightarrow SYBILL2.3c
 - E.J. Ahn et al., Phys. Rev. D80, 094003 (2009).
- QGSJET II → QGSJETII-4
 - S. Ostapchenko, Phys. Lett. 636, 40 (2006).
- DPMJET3
 - S. Roesler, R. Engel and J. Ranft, Proc. of 27th
- EPOS1.9 \rightarrow EPOS-LHC
 - T. Pierog and K.Werner, Phys. Rev. Lett. **101**, 1, 1, 1, 2000,

LHCF DETECTORS

The LHCf Collaboration

^{*,**}Y.Itow, ^{*}Y.Matsubara, ^{*}H.Menjo, ^{*}Y.Muraki, ^{*}K.Ohashi, ^{*}K.Sato, ^{*}M.Ueno,

*Institute for Space-Earth Environmental Research, Nagoya University, Japan **Kobayashi-Maskawa Institute, Nagoya University, Japan ***Graduate School of Science, Nagoya University, Japan

T.Sako ICRR, University of Tokyo, Japan

K.Kasahara, K.Yoshida Shibaura Institute of Technology, Japan

S.Torii *Waseda University, Japan*

Y.Shimizu, T.Tamura, Kanagawa University, Japan

Tokushima University, Japan

M.Haguenauer *Ecole Polytechnique, France*

LBNL, Berkeley, USA

O.Adriani, E.Berti, L.Bonechi, M.Bongi, G.Castellini, R.D'Alessandro, P.Papini, S.Ricciarini, A.Tiberio

INFN, Univ. di Firenze, Italy INFN, Univ. di Catania, Italy

A.Tricomi

N.Sakurai

W.C.Turner

13

The LHCf experiment at LHC

LHC

Setup in IP1-TAN (side view)

Calorimeter performance

π^0 reconstruction capability

ATLAS-LHCf trigger exchange

LHCF DATA

Brief history of LHCf

- May 2004 LOI
- Feb 2006 TDR
- June 2006 LHCC approved

Aug 2007 SPS beam test

Dec- Jul 2010 0.9TeV& 7TeV pp Detector removal

Dec2012- Feb 2013 5TeV/n pPb, 2.76TeVpp May-June 2015 (Arm2 only) 13 TeVpp Detector removal Detector removal

Nov-Dec 2016 8 TeV/n pPb (Arm2) Detector removal

LHCf results and publication

Run	E _{lab} (eV)	Photon	Neutron	π	
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		-	
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			PRC 86, 065209 (2014)	PRD 94
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)	PLB 750, 360 (2015)	PRD 86, 092001 (2012)	(2016)
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)	JHEP 1811, 73 (2018)	preliminary	
p-Pb √s _{NN} =5TeV (2013,2016)	1.4x10 ¹⁶			PRC 86, 065209 (2014)	
p-Pb √s _{NN} =8TeV (2016)	3.6x10 ¹⁶	Preliminary			
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴	on-going			

ATLAS_CONF_2017_075

- ATLAS-LHCf common data at 13TeV pp
- Rapidity gap events selected as diffraction

Some of cosmic ray interaction models need large modification (Both diffraction and non-diffraction)

Very forward photon: diffraction/total

Ratio (N_{ch=0}/Inclusive)

ATLAS-CONF-2017-075

- Large excess in data than any other models at 0-degree ($\eta > 10.76$)
- XF scaling ? comparison with ISR, PHENIX

 $\pi^{\rm 0}~{\rm P_z}$ (~ E) at 7 TeV pp

Feynman scaling in π⁰ production PRD 94 (2016) 032007

DPMJET 3.0.6 (vs=7TeV) 0.0 < p_T [GeV] < 0.4 QGSJET II-04 (√s=7TeV) 10⁻¹ 10⁻¹ x_F/σ_{inel} dσ/dx_F 10⁻² (1/σ_{inel})(dσ/dy) 10⁻² 10⁻³ 10⁻³ LHCf (√s=7TeV) LHCf (√s=2.76TeV) LHCf √s=7TeV 10-4 10-4 UA7 (√s=630GeV) LHCf vs=2.76TeV 10⁻⁵ 10⁻⁵ 0.6 0.7 0.8 0.9 -2 -1 0 1 X_F y_{beam} - y

- LHCf π^0 spectra at \sqrt{s} = 2.76 and 7 TeV (preliminary)
- Need same pT coverage in 0.5 TeV \rightarrow RHICf

28

LHCf future in LHC Run-3

- LHCf will revisit LHC 14 TeV pp in Run-3 in 2021
 - High statistics π^0 data w/ x10 higher luminosity
 - forward ηn (h $\rightarrow 2\gamma$: BR 39.4%)
 - forward K_{s}^{0} ($K_{s}^{0} \rightarrow \pi^{0}\pi^{0} \rightarrow 4 \gamma$: BR 30.7%)
- Aiming p-O collisions foreseen in Run-3
 - Worl CR community supports LHC p-O for CR interactions
 - LHCC also supports oxygen beam runs
 - Maybe 2023 ?

RHICF

RHICf: neutral particle measurement at 0-degree of STAR by a small imaging calorimeter

Why RHIC (@ lower √s) ?

- ZDC closer to IP, same PT acceptance as LHC
 - RHIC ZDC @ z=18m @500GeVpp,
 - LHC ZDC @ z=140m @ 7, 13 TeVpp

Feynman scaling in forward region; 0.5 TeV ↔ 7 , 13 TeV

- Rich experience and opportunity for p-A, A-A
 - Understanding nuclear effect in air shower
- Polarized proton collisions
 - Precise spin asymmetry for forward particles
 - Probe for forward productions

The RHICf collaboration

Y.Itow^{ab)}, H.Menjo^{a)}, K.Sato^{a)}, M.Ueno^{a)}, Q.D.Zhou^{a)}, T.Sako^{c)}, Y.Goto^{d)}, I.Nakagawa^{d)}, R.Saidl^{d)}, K.Tanida^{e)}, K.Kasahara^{f)}, T.Suzuki^{f)}, S.Torii^{f)}, N.Sakurai^{g)}, J.S.Park^{h)}, M.H.Kimⁱ⁾, B.Hongⁱ⁾, O.Adriani^{j)}, E.Berti^{j)}, L.Bonechi^{j)}, R.D'Alessandro^{j)}, A.Tricomi^{k)}

a) Institute for Space-Earth Environmental Research, Nagoya University,

b) Kobayashi-Maskawa Institute, Nagoya University,

c) ICRR, University of Tokyo,

d) Riken/Riken BNL Research Center,

e) JAEA,

f) Waseda University,

g) Tokushima University,

h) Seoul National University,

i) Korea University,

j) INFN, University of Florence,

k) INFN, University of Catania

History

- 2011 First discussion
- 2013 LOI
- 2014
 Proposal for RUN16 with PHENIX
- 2015

Proposal for RUN17 with STAR

• 2017 Jun Physics run completed Proposal; Precise measurements of very forward particle production at RHIC

Y.Itow, H.Menjo, T.Sako, N.Sakurai

Solar-Terrestrial Environment Laboratoy / Kobayashi-Maskawa Institute for the Origin of Particles and the Universe / Graduate School of Science, Nagoya University, Japan

K.Kasahara, T.Suzuki, S.Torii

Waseda University, Japan

O.Adriani, L.Bonechi, G.Mitsuka, A.Tricomi

INFN/University of Firenze/University of Catania, Italy

Y.Goto

RIKEN Nishina Center / RIKEN BNL Research Center, Japan

K.Tanida

Seoul National University

A_N forward neutron at RHIC-IP12 M. Togawa, PhD thesis (2008)

A_N results from EMCal

	Forward	Backward			
Neutron	$-0.090 \pm 0.006 \pm 0.009$	$0.003 \pm 0.004 \pm 0.003$			
Photon	$-0.009 \pm 0.015 \pm 0.008$	$-0.019 \pm 0.010 \pm 0.004$			
π^0	$-0.024 \pm 0.031 \pm 0.002$	$0.006 \pm 0.021 \pm 0.001$			
A_N results from HCal					
Neutron	$-0.126 \pm 0.017 \pm 0.045$	$0.028 \pm 0.019 \pm 0.010$			

$A_{\mbox{\scriptsize N}}$ of forward neutron at RHICf

- Combination of ZDC (good E_{had} resolution) and RHICf detector (good position resolution) provide good p_T resolution in neutron measurements
- With horizontal polarization, covering $p_T < 1 GeV/c$ 36

RHICf physics run (25-27 June, 2017)

- √s=510 GeV p+p collisions
- Higher β^* (=8m) than usual RHIC operation
- Radial polarization to maximize the single-spin asymmetry in vertical
- Luminosity~ 10^{31} cm⁻²s⁻¹
- Trig. Thres ~ 10GeV

RHICf detector configuration

RHICf beam status

Stable 4 fills for physics w/ 3 detector positions

Beam polarization summary of TOP position runs (> 20 min)

On-going analysis

- Calibration, basic performance check being completed
- A clear π^0 peak confirmed good performance
- Correlation w/ STAR-ZDC, STAR-combined trig. OK
- Photons, neutrons, and π^0 analysis on-going

Summary

- Forward neutral productions have been studied by LHCf and RHICf to verify cosmic ray interactions
 - Covering $E_{CR} = 10^{14} 10^{17} \text{ eV}$
 - Many new data delivered. No model perfectly reproduces. Benchmark for future modeling works.
 - ATLAS-combined analysis on-going
- RHICf also provides unique AN measurement at very forward (low pT)
 - Very forward w/ same p_T coverage as LHCf but at 0.5 TeV to check Feynman scaling
 - Unexpected is $\pi^0 A_N$ discovered \rightarrow next speaker
 - Precise neutron A_N upto $p_T \sim 1 \text{ GeV/c}$
 - Future STAR-combined analysis ?