First result of transverse single spin asymmetry (A_N) for very forward π^0 production in polarized p + p collisions at $\sqrt{s} = 510$ GeV Minho Kim (Korea Univ./ RIKEN) on behalf of the RHICf collaboration # A_N in forward π^0 production - Observed non-zero A_N of π^0 ever has been interpreted based on only perturbative picture theoretically. - Non-zero A_N comes from an asymmetry of the partonic-level fragmentation process or spin-dependent quark-gluon correlations in the proton. 2/18 # New question to the A_N of forward π^0 - Larger A_N was observed by more isolated π^0 than less isolated one. - Non-perturbative process may have a finite contribution to the π^0 A_N as well as perturbative one. # A_N in very forward π^0 production - No measurement ever for the p_T range below 1 GeV/c. - RHICf experiment measured the A_N of very forward π^0 (6 $\langle \eta \rangle$ and $p_T \langle 1 \rangle$ GeV/c) where the non-perturbative process is expected to be dominant. # RHIC forward (RHICf) experiment #### RHICf detector & π^0 measurement Small tower: 20/20 mm Large tower: 40/40 mm 17 Tungsten absorbers (44 X_0 , 1.6 λ_{int}) 16 GSO plates for energy measurement 4 GSO bar layers for position measurement #### RHICf detector & π^0 measurement Small tower: 20/20 mm Large tower: 40/40 mm Tungsten absorber (44 X_0 , 1.6 λ_{int}) 16 GSO plates for energy measurement 4 GSO bar layers for position measurement # Position reconstruction of photon Positions of decayed photons are measured by 1 mm dimension GSO bars. 8/18 #### Energy reconstruction of photon # Invariant mass of two photons - Data is well matched with simulation showing clear π^0 peak around 135 MeV/c² with ~8 MeV/c² peak width. - Invariant mass was fitted by polynomial for background and Gaussian for π^0 . - Background part usually comes from coincidence of two photons from different π^0 , not wrong reconstruction. 10/18 # Energy and p_T reconstruction preformances - Less than 3% of energy resolution is expected for both Type-I and Type-II π^0 . - p_T resolution of Type-II π^0 is three times worse than Type-I. # Peak-to-peak contamination of Type-II π^0 - If two photons simultaneously develop the EM shower, peak positions get more fluctuated than one photon case. - Peak-to-peak energy contamination makes the p_T resolution of Type-II π^0 worse than Type-I. 12/18 # π^0 kinematics & A_N calculation - Very forward π^0 over the x_F range of $0.2 < x_F < 1.0$ and p_T range of $0.0 < p_T < 1.0$ GeV/c was measured. - Systematic uncertainties by polarization, π^0 azimuthal angle, background A_N subtraction, and beam center was included. # Very forward $\pi^0 A_N$ as a function of p_T - Non-zero A_N was observed even in very forward π^0 showing clear increasing tendency as a function of p_T . - Note that p_T resolutions of the RHICf detector is much finer than p_T binning in the preliminary plot. # Very forward $\pi^0 A_N$ as a function of x_F - The higher p_T range the A_N is measured in, the more clearly it increases as a function of x_F . - Note that x_F resolutions of the RHICf detector are also much finer than x_F binning in the preliminary plot. # Comparison with previous measurements - Scenario 1: There is perturbative contribution even in lower p_T area. - Scenario 2: The origin of x_F scaling is non-perturbative process. - Scenario 3: Higher (lower) momentum A_N is just mainly due to (non-) perturbative process respectively. # What's the next step? #### Non-perturbative **Perturbative** - What's the real origin of the non-zero A_N of π^0 ? - How competitively each perturbative and non-perturbative process contribute to the $\pi^0 A_N$ will be answered by combined analysis with STAR. ### Summary - RHICf experiment measured the A_N of very forward (6 $\langle \eta \rangle$ neutral particles (neutron, π^0 , single γ). - Preliminary results of RHICf π^0 A_N are meaning possible nonnegligible contribution from the non-perturbative process. - Further analysis with other STAR detectors and data taking will provide a powerful input to understand the origin of the $\pi^0 A_N$. - We hope many interest from both theoretical and experimental spin physicists! # Backup # Subject.. ■ Contents.. / # New question to the A_N of forward π^0 Smaller A_N was observed with increasing multiplicity of photons (closer to hard scattering event topology). #### **Operation summary** - RHICf experiment was successfully operated in June 2017. - Total 110 M events were accumulated for neutral particles (neutron, π^0 , and single photon) during 28 hours. - Radial polarization. - Higher $β^*$: 8 m and lower luminosity: 10^{31} cm⁻²s⁻¹ than usual. ### Triggers of RHICf detector **Shower trigger**: Energy deposits of three successive layers at large or small tower are larger than 45 MeV. (for neutron and single photon) High EM trigger: Energy deposit of 4th layer at large or small tower is larger than 500 MeV. (for high energy photon and Type-II π^0) Type-I π^0 trigger: Energy deposits of three forward (up to 7th) successive layers at large and small tower are larger than 45 MeV. (for Type-I π^0) # Beam center calculation (by neutron) - Neutrons were used for beam center calculation. - Square root formula shows good agreement with luminosity one. #### Neutron and gamma PID - L90 represents the longitudinal depth where the energy deposit reaches 90 % of total energy deposit. - Gamma events can be distinguished from neutron ones using that EM shower develops more rapidly than hadronic one. ### A_N calculation - P (~ 0.55 ± 0.05) can be calculated by polarization monitor. - \blacksquare R (~ 0.970 ± 0.02) is estimated by luminosity ratio of charged particles near IP. - ϵ (~ 0.95 ± 0.05) can be studied by comparing actual and diluted A_N in simulation. #### What's the next? #### What's the next? $$\sqrt{s}$$ = 200 GeV ○ $p^{\uparrow}+p \rightarrow \text{Cluster} + X \text{ (PHENIX)}$ $p^{\uparrow}+p \rightarrow \pi^{0} + X \text{ (STAR)}$ \sqrt{s} = 510 GeV △ $p^{\uparrow}+p \rightarrow \pi^{0} + X \text{ (RHICf)}$ - How much both perturbative and non-perturbative process contribute to the $\pi^0 A_N$ should be exactly studied. - Combined analysis with STAR will make the comparison of two processes possible.