First result of transverse single spin asymmetry (A_N) for very forward π^0 production in polarized p + p collisions at $\sqrt{s} = 510$ GeV

Minho Kim (Korea Univ./ RIKEN)

on behalf of the RHICf collaboration

A_N in forward π^0 production

- Observed non-zero A_N of π^0 ever has been interpreted based on only perturbative picture theoretically.
- Non-zero A_N comes from an asymmetry of the partonic-level fragmentation process or spin-dependent quark-gluon correlations in the proton.

2/18

New question to the A_N of forward π^0

- Larger A_N was observed by more isolated π^0 than less isolated one.
- Non-perturbative process may have a finite contribution to the π^0 A_N as well as perturbative one.

A_N in very forward π^0 production

- No measurement ever for the p_T range below 1 GeV/c.
- RHICf experiment measured the A_N of very forward π^0 (6 $\langle \eta \rangle$ and $p_T \langle 1 \rangle$ GeV/c) where the non-perturbative process is expected to be dominant.

RHIC forward (RHICf) experiment

RHICf detector & π^0 measurement

Small tower: 20/20 mm Large tower: 40/40 mm

17 Tungsten absorbers (44 X_0 , 1.6 λ_{int})

16 GSO plates for energy measurement

4 GSO bar layers for position measurement

RHICf detector & π^0 measurement

Small tower: 20/20 mm Large tower: 40/40 mm

Tungsten absorber (44 X_0 , 1.6 λ_{int})

16 GSO plates for energy measurement

4 GSO bar layers for position measurement

Position reconstruction of photon

Positions of decayed photons are measured by 1 mm dimension GSO bars.
8/18

Energy reconstruction of photon

Invariant mass of two photons

- Data is well matched with simulation showing clear π^0 peak around 135 MeV/c² with ~8 MeV/c² peak width.
- Invariant mass was fitted by polynomial for background and Gaussian for π^0 .
- Background part usually comes from coincidence of two photons from different π^0 , not wrong reconstruction.

10/18

Energy and p_T reconstruction preformances

- Less than 3% of energy resolution is expected for both Type-I and Type-II π^0 .
- p_T resolution of Type-II π^0 is three times worse than Type-I.

Peak-to-peak contamination of Type-II π^0

- If two photons simultaneously develop the EM shower, peak positions get more fluctuated than one photon case.
- Peak-to-peak energy contamination makes the p_T resolution of Type-II π^0 worse than Type-I.

12/18

π^0 kinematics & A_N calculation

- Very forward π^0 over the x_F range of $0.2 < x_F < 1.0$ and p_T range of $0.0 < p_T < 1.0$ GeV/c was measured.
- Systematic uncertainties by polarization, π^0 azimuthal angle, background A_N subtraction, and beam center was included.

Very forward $\pi^0 A_N$ as a function of p_T

- Non-zero A_N was observed even in very forward π^0 showing clear increasing tendency as a function of p_T .
- Note that p_T resolutions of the RHICf detector is much finer than p_T binning in the preliminary plot.

Very forward $\pi^0 A_N$ as a function of x_F

- The higher p_T range the A_N is measured in, the more clearly it increases as a function of x_F .
- Note that x_F resolutions of the RHICf detector are also much finer than x_F binning in the preliminary plot.

Comparison with previous measurements

- Scenario 1: There is perturbative contribution even in lower p_T area.
- Scenario 2: The origin of x_F scaling is non-perturbative process.
- Scenario 3: Higher (lower) momentum A_N is just mainly due to (non-) perturbative process respectively.

What's the next step?

Non-perturbative

Perturbative

- What's the real origin of the non-zero A_N of π^0 ?
- How competitively each perturbative and non-perturbative process contribute to the $\pi^0 A_N$ will be answered by combined analysis with STAR.

Summary

- RHICf experiment measured the A_N of very forward (6 $\langle \eta \rangle$ neutral particles (neutron, π^0 , single γ).
- Preliminary results of RHICf π^0 A_N are meaning possible nonnegligible contribution from the non-perturbative process.
- Further analysis with other STAR detectors and data taking will provide a powerful input to understand the origin of the $\pi^0 A_N$.
- We hope many interest from both theoretical and experimental spin physicists!

Backup

Subject..

■ Contents..

/

New question to the A_N of forward π^0

Smaller A_N was observed with increasing multiplicity of photons (closer to hard scattering event topology).

Operation summary

- RHICf experiment was successfully operated in June 2017.
- Total 110 M events were accumulated for neutral particles (neutron, π^0 , and single photon) during 28 hours.
- Radial polarization.
- Higher $β^*$: 8 m and lower luminosity: 10^{31} cm⁻²s⁻¹ than usual.

Triggers of RHICf detector

Shower trigger: Energy deposits of three successive layers at large or small tower are larger than 45 MeV.

(for neutron and single photon)

High EM trigger: Energy deposit of 4th layer at large or small tower is larger than 500 MeV.

(for high energy photon and Type-II π^0)

Type-I π^0 trigger: Energy deposits of three forward (up to 7th) successive layers at large and small tower are larger than 45 MeV.

(for Type-I π^0)

Beam center calculation (by neutron)

- Neutrons were used for beam center calculation.
- Square root formula shows good agreement with luminosity one.

Neutron and gamma PID

- L90 represents the longitudinal depth where the energy deposit reaches 90 % of total energy deposit.
- Gamma events can be distinguished from neutron ones using that EM shower develops more rapidly than hadronic one.

A_N calculation

- P (~ 0.55 ± 0.05) can be calculated by polarization monitor.
- \blacksquare R (~ 0.970 ± 0.02) is estimated by luminosity ratio of charged particles near IP.
- ϵ (~ 0.95 ± 0.05) can be studied by comparing actual and diluted A_N in simulation.

What's the next?

What's the next?

$$\sqrt{s}$$
 = 200 GeV
○ $p^{\uparrow}+p \rightarrow \text{Cluster} + X \text{ (PHENIX)}$
 $p^{\uparrow}+p \rightarrow \pi^{0} + X \text{ (STAR)}$
 \sqrt{s} = 510 GeV
△ $p^{\uparrow}+p \rightarrow \pi^{0} + X \text{ (RHICf)}$

- How much both perturbative and non-perturbative process contribute to the $\pi^0 A_N$ should be exactly studied.
- Combined analysis with STAR will make the comparison of two processes possible.