Overview of future facilities for nucleon spin studies

Pacific Spin 2019 Miyazaki, Japan August 30th, 2019 Yuji Goto (RIKEN)

Physics topics for future facilities

- Precision measurement of components of spin of the nucleon
 - Gluon polarization after discovery of positive ΔG at RHIC
 - At small-x
- TMD distributions & fragmentations
 - Drell-Yan vs SIDIS after pioneering measurements at COMPASS and RHIC
 - Gluon's TMD
- Transversity to tensor charge
- Tomography
 - GPD & GDA
- Extending our scope to measure components of mass of the nucleon

Future facilities

- Fixed target experiments
 - JLab 12GeV: SoLID
 - COMPASS++/AMBER (A. Bressan)
 - Fixed target at LHCb & ALICE
 - J-PARC (K. Tanaka, S. Sawada)
- Colliders
 - RHIC: STAR upgrade (A. Ogawa), sPHENIX (M. Liu)
 - NICA: SPD
 - EIC (USA)
 - EicC (China)

JLab 12GeV SoLID

3D Nucleon Structire with the Solenoidal Large Intensity Device (SoLID) at JLab

COMPASS++ / AMBER

- Proposal phase-1: focus on Run3 (2021-2024)
 - Proton radius
 - Antiproton production cross sections
 - Pion-induced Drell-Yan and charmonium production mechanisms

New QCD facility at CERN M2
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN-SPSC-2019–XXX SPSC-P-XXX May 31, 2019
Proposal for Measurements at the M2 beam line of the CERN SPS
Phase-1: 2022-2024
COMPASS++*/AMBER [*]

Fixed target at LHCb & ALICE

- C. Aidala et al., arXiv:1901.08002
- M. Echevarria et al., arXiv:1903.03379
- Polarized storage cell internal target

J-PARC

• Exclusive meson-induced Drell-Yan for time-like GPD

J-PARC E50 Spectrometer + MuID

DY trigger rate is expected to be very low, so that the DY measurement can be a "by-product" of the main E50 experiment.

K. Tanaka 8/28 (Tue) S. Sawada 8/29 (Wed)

STAR forward upgrade

STAR Forward Upgrade

ECal: PHENIX PbSC calorimeter with new readout HCal: Fe/Sc (20mm/3 mm) sandwich. Preshower: Reuse existing FMS-pre-shower

Replace FMS with a compact Ecal and add Hcal + Tracking

Small scale system test @ run19

Project is fully approved and funded

On schedule for first data taking with 500 GeV polarized pp in fall 2021

Physics with STAR forward upgrade

sPHENIX

Spin2018 summary

Spin Physics with sPHENIX

The SPD Project at NICA

Roumen Tsenov

The Nuclotron based Ion Collider fAcility (JINR, Dubna)

• Nucleon PDFs via J/ψ Production

EIC (USA)

- High-energy QCD frontier to study nucleon (hadron) and nucleus (cold nuclear matter) from quarks and gluons
- World's first polarized electron + proton / light-ion / heavy-ion collider
 - Wide (Q^2, x) region
- Electron + proton / light-ion collision
 - Polarized beam
 - e, p, d/³He
 - High luminosity
 - $L_{ep} \sim 10^{33-34} \, \text{cm}^{-2} \text{s}^{-1}$
 - 100-1000 times HERA
 - Collision energy
 - √s = 20 − 100 (140) GeV
- Electron + heavy-ion collision
 - Wide range in nuclei

JLEIC at Jefferson Lab

EicC (China)

离子对撞环 - pRing 20 GeV,C: 1347 m Polarized proton

August 30, 2019

Precision measurement of PDFs

- Inclusive DIS
 - Large Q² (Q² = -q²) provides a hard scale to resolve quarks and gluons in the proton
 - 1D longitudinal motion of partons

• Spin puzzle

- Gluon polarization measurement with polarized DIS
 - Small Bjorken-x region with QCD evolution (DGLAP equation)

$$\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$$

$$\begin{split} \Delta\Sigma/2 &= \text{Quark contribution to Proton Spin}\\ L_{\text{Q}} &= \text{Quark Orbital Ang. Mom}\\ \Delta g &= \text{Gluon contribution to Proton Spin}\\ L_{\text{G}} &= \text{Gluon Orbital Ang. Mom} \end{split}$$

Precision measurement of PDFs

- Semi-Inclusive DIS (SIDIS)
 - Flavor dependence of the quark polarization
 - Transverse-momentum dependence (orbital motion)
- TMD distribution function
 - TMD = Transverse Momentum Dependent
 - Quark, anti-quark, gluon

Sivers function:

- 3D distribution incl. transverse momentum
- Correlation of spin and parton orbital motion

Correlation of the nucleon spin and

Tomography of the nucleon / nucleus

- EIC = color dipole microscope
 - Exclusive process and diffractive process

- GPD (Generalized Parton Distribution)
 - Spatial imaging of gluons and quarks = tomography
 - HERA: 1st generation
 - EIC: 2nd generation (high luminosity, heavy ion, polarization)
 - Orbital angular momentum

$$J_{q}^{z} = \frac{1}{2} \sum_{q} \Delta q + \sum_{q} L_{q} = \frac{1}{2} \left(\int_{-1}^{1} x dx (H^{q} + E^{q}) \right)_{t \to 0}$$

Tomography of the nucleon / nucleus

Unpolarized

- DVCS
 - Deeply virtual Compton scattering

Spatial distribution of sea quarks at EIC 100 fb⁻¹ and corresponding density of partons in the transverse plane

Polarized

- Meson production
 - Gluon tomography by measuring J/ ψ , ' ϕ , ρ , etc.
 - Precision measurement at large radius with high luminosity

3D structure of the nucleon

- How are quarks and gluons confined inside the nucleon?
 - Bag model
 - gluon radius > charged radius
 - Constituent quark model
 - gluon radius ~ charged radius
 - Lattice gauge theory (with slow moving quarks)
 - gluon radius < charged radius
- Need measurement of transverse images of the quarks and gluons in the nucleon
- Proton tomography with GPD measurement
 - R = 0.6 0.7 fm for gluon (HERA) and sea quark (COMPASS)
 - Smaller than 0.85 fm with EM interaction

New picture of the nucleon structure

- Energy Momentum Tensor (EMT)
 - 3D distribution of mass, spin, $T^{\mu\nu} =$ pressure, etc. in the nucleon from GPD measurement
 - Pressure in the proton using GPD data from Jefferson Lab
- Sum rule for the nucleon mass
 - Lattice QCD calculation
 - Discussing how to determine each contribution
- Precision comparison of experiment and theory in the future
 - Mass, spin, pressure, radius,...

EIC detector

Many opportunity and need for additional contributions and collaborators

EIC Day-1 detector with BaBar Solenoid (aka EIC-sPHENIX)

BeAST at BNL

TOPSIDE

(Time Optimized PID Silicon Detector for EIC)

JLEIC Detector Concept with CLEO Solenoid

Status of the EIC project

- NSAC 2015 Long Range Plan
 - We recommend a high-energy high luminosity polarized Electron Ion Collider as the highest priority for new facility construction after the completion of FRIB.
- NAS (National Academies of Sciences, Engineering, and Medicine) review requested by DOE
 - US-based EIC Science Assessment
- NAS webinar and NAS report release 7/24/2018
 - EIC science endorsed unanimously by the NAS

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Status of the EIC project

- NAS assessment of a U.S.-Based Electron-Ion Collider Science
 - EIC can uniquely address three profound questions
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?
- Cost review underway
- CD-0 (US mission need statement) anticipated very soon
- EIC detector R&D program operated by BNL with ~\$1.3M / year since 2011
 - Increase anticipated soon after project officially begins
- EIC accelerator R&D already assigned ~\$7M / year since FY2017

EIC Users Group (EICUG)

- EIC Users Group
 - Established in summer 2016
 - 864 members
 - 184 institutes
 - 30 countries
- EICUG structures in place and active
 - Steering Committee
 - Institutional Board
 - Conference & Talks Committee
 - Working groups
 - software
 - polarimetry
 - IR & luminosity
 - Annual meetings
 - SBU (2014), Berkeley (2015), ANL (2016), Trieste (2017), CAU (2018), Paris (2019)

Summary

- Physics for future facilities
 - Precision measurement of components of the nucleon spin
 - TMD distributions & fragmentations
 - Transversity to tensor charge
 - Tomography: GPD & GDA
 - Measurement of components of the nucleon mass
- EIC project
 - EIC science endorsed by the NAS
 - CD-0 (approve mission need) anticipated very soon
 - Active EIC User Group and R&D

SPIN2020 at Matsue, Japan

- 24th International Spin Symposium
 - September 21 25, 2020 (after Tokyo Olympic/Paralympic)

Where is Matsue

- Famous and interesting area for 2,000 years of Japanese history from creation myth era to present day
- · Two domestic airports near Matsue city, Izumo airport and Yonago airport
- About 30 to 45 minutes from both airports to Matsue city by airport shuttle bus
- Connected with Haneda international airport in Tokyo by more than 10 daily flights

Backup Slides

Quark-gluon structure

- 1-D picture
 - Parton distribution function (PDF) of quarks and gluons
 - x: momentum fraction of quarks and gluons
 - Significant improvement of precision of the polarized PDF at EIC
 - especially gluon polarization
- 3-D picture
 - Generalized parton distribution (GPD) function
 - charge distribution
 - magnetic-moment distribution
 - mass distribution
 - Comparison of radii (R)
 - Orbital motion / orbital angular momentum
 - origin of the nucleon spin
 - New picture to be established at EIC

27

Other physics at EIC

- Discovery of the gluon saturation
 - Emergent properties of dense system of gluons
- Hadronization in the nuclei
 - Hadron and jet production from quarks and gluons in the cold nuclear matter
- Hadron spectroscopy
 - Exotics
- Tensor charge of the nucleon
 - Transversity measurement
- Polarized e + d/³He collisions
 - Polarized structure of the neutron
 - "n+p" wave function of the deuteron
- Short range correlations
 - EMC effect by high-momentum "n+p" pairs in nuclei
- High-energy cosmic-ray/neutrino reaction
 - Energy flow in the very forward region
 - Event generator for shower evolution

EIC detector & integration with the IR

- EIC detector
 - Mid and forward rapidity detectors
 - Scattered electron detector, backward and mid rapidity
 - Low angle trigger
 - Absolute and relative luminosity measurement
 - Polarization measurement

Figure Courtsey: Rik Yoshida