Interaction of Gamma-rays and Particles in Matter

H. Ishiyama

Nishina School 2019 RIKEN, 30th July – 9th August, 2019

Radiation Interactions in Matter: 1. Charged particles

Charged particle : α rays, proton beam, Heavy ion beam \rightarrow Material

Coulomb interaction b.w. electron in matter and charged particle

 \Rightarrow excitation, ionization

 \Rightarrow Lose the energy gradually through a lot of the interactions to electrons in matter

 \Rightarrow Stop

Range

Calculation for Range \rightarrow SRIM code (free soft) http://www.srim.org/

====== Target Composition ======= Atom Atom Atomic Mass Name Numb Percent Percent

C 6 100.00 100.00

Bragg Correction = 0.00% Stopping Units = MeV / (mg/cm2) See bottom of Table for other Stopping units

lon dE/dx dE/dx Projected Longitudinal Lateral					
Energy E	Elec. Nuo	clear Rang	ge Stragg	ling Strag	gling
500.00 keV	3.534E-01	2.738E-04	4.40 um	1837 A	1974 A
550.00 keV	3.334E-01	2.524E-04	5.04 um	2092 A	2182 A
600.00 keV	3.160E-01	2.342E-04	5.72 um	2347 A	2402 A
650.00 keV	3.007E-01	2.186E-04	6.44 um	2601 A	2632 A
700.00 keV	2.872E-01	2.051E-04	7.19 um	2856 A	2873 A
800.00 keV	2.640E-01	1.828E-04	8.80 um	3732 A	3385 A
900.00 keV	2.450E-01	1.651E-04	10.54 um	4553 A	3934 A
(1.00 MeV)	2.291E-01	1.507E-04	12.41 um	5350 A	4520 A
1.10 MeV	2.163E-01	1.387E-04	14.40 um	6134 A	5138 A
1.20 MeV	2.035E-01	1.286E-04	16.51 um	6915 A	5788 A
1.30 MeV	1.923E-01	1.199E-04	18.74 um	7703 A	6473 A
1.40 MeV	1.825E-01	1.124E-04	21.11 um	8501 A	7191 A
1.50 MeV	1.737E-01	1.058E-04	23.59 um	9309 A	7943 A
1.60 MeV	1.659E-01	9.998E-05	26.20 um	1.01 um	8727 A
1.70 MeV	1.588E-01	9.481E-05	28.93 um	1.10 um	9543 A
1.80 MeV	1.524E-01	9.017E-05	31.77 um	1.18 um	1.04 um
2.00 MeV	1.412E-01	8.219E-05	37.81 um	1.48 um	1.22 um

Radiation Interactions in Matter: 2. β ray (electron)

 $-\beta$ ray interacts electron in matter. Both have equal mass so that large energy transfer in a single encounter is possible and large deviations in the β ray path are also possible.

The β range is defined as maximum distance: 1 -2 mm / 1 MeV β ray Radiation Interactions in Matter: 3. γ rays

Main processes for radiation detection:

- 1. Photoelectric effect
- 2. Compton scattering
- 3. Pair creation

1. Photoelectric effect

- γ ray undergoes an interaction with absorbed atom in which the γ rays disappears.
- Energetic photo-electron is ejected.
- The energy:

 $E_e = E_{\gamma}$ – binding energy of electron

3. Pair Production

★ Require E_γ > 2m_e = 1.022 MeV
 ★ Occurs in strong electric field near nuclei.
 ★ Create electron and positron pair at the point of Complete disappearance of incident γ ray

$$E_{\rm e^-} + E_{\rm e^+} = hv - 2m_0 c^2$$

★ Positron will annihilate → Two annihilation photons (γ rays) of 0.511 MeV appear
★ One or two g rays of 0.511 MeV may escape from absorbed material.

Attenuation coefficient

★ γ ray yield decreases exponentially according with absorber (material) thickness, since those process occur with a certain probability per unit path length in the absorber and γ ray photon is removed (absorbed or scattered).

 \Rightarrow µ: linear attenuation coefficient

= photoelectric effect + Compton scattering + pair production

γ ray detection

 \bigstar A γ ray photon has no charge so that it does not create directly ionization and excitation of matter through which it passes.

★ The (high energetic) electron generated as those processes has charge.
=> We can detect those electrons.

Response Function in detector

★ Photoelectric effect:
Full energy absorbed⇒ Photopeak
★ Compton scattering:
Only partial energy
★ Pair production
Full energy absorbed, but 2*0.511 MeV
γ rays emitted (one or two can be escaped)

Detector types

 \star Mainly two types of detectors for γ -ray measurements

- Scintillation detectors
 Ionization by radiation -> Scintillation (visible photon)
 eg) NaI(Tl) detector (a kind of inorganic scintillator)
- Semiconductor detectors electrons generated by ionization eg) Ge detector (expensive)

Scintillation mechanize in inorganic (pure)crystal

★ Charged particle hit a valence electron in the lattice, transferring the energy to electron.
 Electron goes up into conduction band. Also a hole (+) is generated in valence band.
 ★ The electron in conduction band and the hole in valence band move freely.
 ★ Electron meets a hole so that electron goes down to valance band so that the energy is released as light. -> Scintillation
 Not good efficiency for light generation & Too high energy for visible light

Scintillation mechanize in inorganic crystal with activator

 \bigstar Intentionally, a small amount of impurity (Tl) add into the scintillator material (NaI). New energy bands inside the band gap are generated.

★ The excitation energy in activator is smaller than band gap. → Visible light is generated ★ The hole is captured in ground state in activator and the electron is captured in excited state in activator efficiently.

 \Rightarrow Efficient light generation

Number of photons in NaI(T1) / MeV = 38,000

How to convert photons to electric pulse signal? ~ Photo Multipliers (PMT)~

★ Scintillation light hits photocathode in PMT. Light is converted to electron on photocathode thanks to Photoelectric effect.

 \bigstar Electron is accelerated with electric potential on dynode and hits dynode, leading to generating several electrons which are emitted from the dynode.

-> Repeat on multi-dynodes.

```
\begin{array}{rll} Gain \sim & \delta^{N} & : & typically \ \delta \sim 5 \\ If \ 10 \ electrodes, \ Gain \sim 10^{7} \end{array}
```

★ Finally, electrons are collected on Anode.=> Enough charges for pulse height

Statistics for photo-electrons

Scintillator

- **★** Scintillation efficiency ~ 12%
 - 0.5 *0.12 = 60 keV for scintillation \Rightarrow converted with 3 eV energy photon: 60,000/3 = 20,000 photons
 - loss during transportation (surface of crystal, crystal-PMT interface, etc.): $\sim 25\% \Rightarrow 15,000$ photons
- A Quantum efficiency on photo-cathode (= number of photo-electrons/number of photons) $\sim 20\%$
 - \Rightarrow 15,000 photons *0.2 = 3,000 electrons 3,000 * 10⁶⁻⁷ = 3*10⁹⁻¹⁰ e **Detectable**

Energy resolution (one of main features for detector)

★ Assuming radiation, for a single energy is recorded, a Gaussian distribution is expected. The energy resolution is defined as:

 $R \equiv Full Width of Half Maximum/Peak position$

- \bigstar Origins for resolution loss
 - Charge collection statistic (Photo-electron statistics)
 - Electronic noise
 - Variations in the detector response
 - Drifts in operating parameters

 \bigstar Resolution from the statistics

number of photo-electrons $\sim 3{,}000$ for 0.5 MeV γ ray

 \Rightarrow Standard deviation (Assuming Poisson distribution) $\sigma = \sqrt{3000/3000} \sim 1.8\%$

 $FWHM = 2.35\sigma$

 $R \sim 4.3\%$ from photo-electron statistics at 0.5 MeV γ ray detection (main)

How about semi-conductor detectors (Ge detector)?

★ To create one photo-electrons, we need (energy) cost about: 0.5 MeV/ 3,000 ~ 160 eV

★ Basic concept of semiconductor Due to narrow band structure it costs on a few eV to create an electron-hole pair.

Charges can be collected directly thanks for semiconductor feature

NaI (Tl) vs. Ge detector

★ Energy resolution for Ge detector ~ about Factor 30 better than NaI

Why do we want to use NaI?

- Ge is extremely expensive.
- Lage volume of NaI detector \Rightarrow higher efficiency
- Simple handling (Ge detector has to be cooled)
- Better time resolution for NaI

Digression...

Natural radioactivity (background)

277.3 785 8 78 836 841 single escape 40k 1451-511 228Ac 965 228Ac 965 1.0 228Ac 0.5 . 200 861.6 865.6 510.7 0.4 0.2 10.1 n

⁴⁰K, Thorium, Uranium and long decay chains of Thorium and Uranium

Decay chains

Uranium chain

Thorium chain

When and Where were U & Th generated?

Element abundance in solar system

Mass ratio H: 70.7% He: 27.4% Others: 1.9% Heavy elements (> Ni): 4E-4%

Big Bang Nucleosynthesis: Main production of H, He (Li, Be) No stable isotope : A = 5, 8

Thermo-nuclear reactions (charged particle) in Stars: Up to Fe Fe: Maximal binding energy / nucleon \Rightarrow Stable

> Beyond Fe \Rightarrow neutron capture reactions: (n, γ) **Why do two peaks exist?** Slow (s-) process Rapid (r-) process

Beyond Fe, why do several peaks exist? (before double peaks problem)

Shell model

 $\Rightarrow \text{ Magic number} = 2, 8, 20, 28, 50, 82, 126,...$ We call 'Shell closure'.

Typically, ⁴He, ¹⁶O, ²⁰Ne, ⁴⁰Ca (double magic nuclei)

High S_n around magic numbers = stable

 \Rightarrow Reversely speaking, neutron capture is not easy after magic number nuclei.

- \Rightarrow Suppression of neutron capture reaction
- \Rightarrow Peak formation (accumulation at around magic number)

Clayton, Principles of stellar Evolution And Nucleosynthesis (1983)

Neutron capture process along stable nuclei \Rightarrow - slower than β -decay, Slow(s-) process

Neutron capture process on radioactive nuclei \Rightarrow faster than β -decay, Rapid (r-) process

r-process vs. s-process

s-process

To proceed toward heavier nuclei Neutron capture rates should be slower than β -decay rate. Low neutron density & Long time scale (~ 10⁵ year)

r-process

To proceed toward heavier nuclei along radioactive nuclei, neutron capture rates should be faster than β -decay rate.

High neutron density & short time scale (~ seconds)

Features of r-process

- Neuron capture is faster than beta decay
- Uranium, Th, etc. productions beyond Bi
- · $(n, \gamma) (\gamma, n)$ equilibrium @ high temperature $T \sim 10^9 \text{ K}$

neutron capture reactions & photo-distinguish reactions equilibrium

Waiting point nuclei

$$N = 50, 82, 126 : Sn \Rightarrow high,$$

- Magic number + 1: Sn \Rightarrow low
- \Rightarrow Neutron capture reaction ceases on

those nuclei have to wait for β -decay

'Waiting point nuclei'

 \Rightarrow Peak formation

High neutron density $> 10^{20}$ cm⁻³

Candidates for r-process site

CS 22892-052

Network calculation for r-process nucleosynthesis

Let's start γ ray measurement with NaI detector

To Do List

.

- Watch the signals with Oscilloscope
- Measure γ ray energy spectrum
 Co source, Cs source, Room back ground
 Full energy peak, Compton-edge,....
 Energy resolution on each peak
 Energy calibration
 Efficiency measurement