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Outline of this work

Outline of this work

First spectroscopy on 78Ni has been performed at RIBF, RIKEN.

Excited states of 78Ni were obtained by combination of the two key
detectors; DALI2 γ-ray spectrometer and MINOS liquid hydrogen
system.

Doubly shell-closure of 78Ni has been confirmed.

At the same time, emergence of shape-coexistence nature in 78Ni
has been suggested, resulting in the possible quenching of neutron-
and proton-shell gaps beyond this anchor point.
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Motivation

Nucleus: a quantum many-body system

A picture of nuclear structure:
nucleons in single particle
states

Large gaps at 2, 8, 20, 28,
50,· · · , reproduced by a
spin-orbit interaction in a
Woods-Saxon type potential

Magic numbers are the
numbers of proton and
neutron at shell-closure

28, 50,.. are the numbers
induced by spin-orbit splittings
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Motivation

How to determine the shell closures?

Systematic trend of mass
difference is a direct indication
of the ground state property.

Two-neutron separation energy,
S2n, are shown. Sudden drops
above N = 50 gap are evident.

It’s hard to reach exotic region.  6
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Instead, the excitation energy works as a good indicator of shell
closure and single particle energies.

The energy of first 2+ state of even-even nuclei is rather commonly
used for a first clue of shell-closure.
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Motivation

E(2+
1 ) systematics among the nuclear chart

The energy E(2+) is a good indicator of the shell closure.
78Ni is the only candidate of the unobserved neutron-rich
particle-bound doubly magic nuclei.

Aim of this work: First γ-ray spectroscopy of doubly magic 78Ni.

Two-neutron drip line
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Motivation

“Magic numbers” are not universal

Emergence of a new magic numbers

Appearance of shell-closure along calcium
isotopes in 52,54Ca was confirmed by high excitation
energies E(2+). This indicates new magic
numbers: N = 32, 34. 1
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(Figure from D. Steppenbeck et al., Nature 502, 207-210 (2013))

Disappearance of magic number

Low excitation energy of 42Si indicates the
N = 28 shell closure has been collapsed in
much less proton nuclei.
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Motivation

What is the driving force of the “rearrangement”?

Tensor term was pointed out as a major reason for modifying these
shell gaps. It works between protons and neutrons as reducing the
spin-orbit splitting.
Toward 78Ni, the Z = 28 gap are expected to be reduced by filling
neutrons in g9/2 shell up to N = 50.
While, the N = 50 gap is assumed to be collapsed in less proton
nuclei Z < 28, below 78Ni.
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Motivation

Experimental studies of 78Ni
Benchmarking the nuclear structure in the most neutron-rich doubly magic nuclei

First production at GSI:
3 counts in 5.5 days [1].

First β-decay halflife T1/2

measurement at NSCL:
11 counts in 4.3 days [2].

Halflife measurement at
RIBF: 4000 counts in
7.5 days [3].
→ Indication of magicity
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[3] Z.Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014)
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Motivation

Theoretical predictions along Z = 28 chain

Most theoretical calculations predict the E(2+) at around 3 MeV,
suggesting the doubly shell-closure of 78Ni.
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Motivation

Shape coexistence in 78Ni

Potential energy surface in the β-γ plane illustrates axial and triaxial
quadrupole deformation
Respective large scale shell model calculatons indicate controversial
results
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Motivation

Other studies around 78Ni

66Cr
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Weakening of N=50 shell gap?
E(2+) of 66Cr, 70,72Fe: C. Santamaria et al., Phys. Rev. Lett. 115, 192501 (2015)

Shape coexistence emerges in 78Ni?
β-delayed conversion electron of 80Ge:  A. Gottardo et al.,
Phys. Rev. Lett 116, 182501(2016)
Isomer shift of 79Zn: X.F. Yang et al., Phys. Rev. Lett. 116, 182502(2016)

Persistence of shell closure?
80Zn Coulomb excitation: J. Van De Walle et al., Phys. Rev. Lett 99, 142501 (2007)
80Zn spectroscopy: Y. Shiga et al., Phys. Rev. C 93, 024320(2016)
79Cu spectroscopy: L. Olivier et al., Phys. Rev. Lett. 119, 192501(2017)
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Experiment

Two-step reaction to populate excited states of 78Ni

Primary 238U with 345 MeV/u at an average intensity of 13 pnA
Secondary beam from in-flight fission of 238U collected by BigRIPS
A secondary target and a γ-ray spectrometer were installed in the
midst of magnetic spectrometers, F8
79Cu(p, 2p)78Ni and 80Zn(p, 3p)78Ni reactions

238U beam
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Experiment

Bρ−∆E−TOF method applied for PID

Observations

Velocity β: Deduced from TOF (Time of flight)

β =
L

c
· 1

TOF
.

Atomic number Z : Deduced from β and energy loss ∆E

−dE

dx
=

4π
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·
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4πε0

)2
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[
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Mass-to-charge ratio A/Q: From β and magnetic rigidity Bρ
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Experiment

Beamline detectors for particle identification

Detectors
TOF: Timings between plastic scintillators
location: both ends of each spectrometer (F3, F7, F8, and F11)

∆E : Energy loss was obtained by MUSIC (multi-sampling ionization
chamber)
location: end of each spectrometer (F7 and F11)

Bρ: Positions and angles were obtained by PPAC (position-sensitive
Parallel Plate Avalanche Counters)
location: dispersive (F5, F9) and achromatic (F3, F7, F8, and F11)
foci
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Experiment

Obtained particle identification plots

PID in upstream (BigRIPS)
79Cu: 5.2 particles/s
80Zn: 290 particles/s

PID in downstream (ZeroDegree)
79Cu(p, 2p)78Ni: 937 evts
80Zn(p, 3p)78Ni: 815 evts
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Experiment

Secondary reaction target and γ-ray detector array

Thick liquid hydrogen target (MINOS): Tracks of the recoil protons
were obtained to reconstuct the reaction vertices. ∆x ∼ 5 mm.

High-efficiency scintillator array (DALI2): Intrinsic resolution and
efficiency were 10% and 20% for 1 MeV γ-ray from moving system.

 MINOS

* Vertex tracking system

* 10-cm thick liquid hydrogen target

DALI2

γ-ray spectrometer

78Ni

To ZeroDegree

79Cu
From BigRIPS

Recoil proton

Drift electron
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Experiment

Doppler broadening in in-beam γ-ray spectroscopy

Uncertainty of the γ-ray energy from Doppler broadening should be taken
into accont to gain the luminosity by employing thick secondary target.
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Experiment

Vertex image reconstructed by MINOS

Determine the vertex position
by two protons and beam
trajectory

PPAC
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Experiment

Spectra of 80Zn via (p, 2p) and (p, 3p) reactions
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Experiment

Spectra of 79Cu via (p, 2p) and (p, 3p) reactions
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Result of the spectroscopy
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Result of the spectroscopy

Different γ-ray populations in respective reactions

While a strong γ-ray population at
2600 keV can be seen in the (p, 2p)
reaction, another 2900-keV transition
is observed in the (p, 3p) channel.
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Result of the spectroscopy

Strategy for analyzing the γ-ray spectra of
respective reaction channels

Analyze spectrum of each reaction channel, (p, 2p) and (p, 3p),
individually.

Energy determination of the peaks: maximum likelihood, using
multi-dimensional probability function.

Significance levels: p-test deduced by likelihood-ratio.

Reconstruction of energy levels: intensity relationship and γ-γ
analysis.
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Result of the spectroscopy

The 79Cu(p, 2p)78Ni channel

Spectrum with 80 keV binning

Energy (keV)
1000 2000 3000 4000 5000

C
ou

nt
s 

/ 8
0 

ke
V

1

10

p2p (m<6)p2p (m<6)
Spectrum with 40 keV binning

Energy (keV)
1000 2000 3000 4000 5000

C
ou

nt
s 

/ 4
0 

ke
V

1

10

p2p (m<6)p2p (m<6)

29 / 44



Result of the spectroscopy

The 79Cu(p, 2p)78Ni channel

Spectrum with 80 keV binning
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Result of the spectroscopy

The 79Cu(p, 2p)78Ni channel

Spectrum with 80 keV binning
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Result of the spectroscopy

γ-γ coincidence analysis
All low-lying transitions are feeding the 2600 keV state

γ-γ coincidence spectrum after
gating with 2600 keV transition

All four low-lying states are
in coincidence.

No background events were
subtracted
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Result of the spectroscopy

γ-γ coincidence analysis
No coincidence between 583 keV and 1103 keV
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Result of the spectroscopy

The 80Zn(p, 3p)78Ni channel
High lying transition at 2900 keV
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Result of the spectroscopy

The 80Zn(p, 3p)78Ni channel
High lying transition at 2900 keV
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was found, which was not
seen in the (p, 2p) reaction

Enhancement at lower γ-ray
multiplicity condition and the
large intensity are seen
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Result of the spectroscopy

Evolution of Irel and significance levels with γ-ray
multiplicity

 0

 50

 100

 150

 200

 250

 300

 350

N
um

be
r o

f G
am

m
a-

ra
ys

 1  2  3  4  5  6  7  8  All
Multiplicity, Mγ

 0

 20

 40

 60

 80

 100

 120

 140

 160

N
um

be
r o

f G
am

m
a-

ra
ys

 1  2  3  4  5  6  7  8  All

-1

 0

 1

 2

 3

 4

Si
gn

ifi
ca

nc
e 

Le
ve

l

 1  2  3  4  5  6  7  8  All
-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

Si
gn

ifi
ca

nc
e 

Le
ve

l

 1  2  3  4  5  6  7  8  All

a

c d

b

Multiplicity, Mγ

Multiplicity, Mγ Multiplicity, Mγ

580 keV
1100 keV
1540 keV

2110 keV
2600 keV
2900 keV

79Cu(p,2p)78Ni 80Zn(p,3p)78Ni

33 / 44



Result of the spectroscopy

Obtained level scheme of 78Ni
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and 2900 keV in respective reactions are
tentatively assigned as 2+ states feeding
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The state at 3180 keV is tentatively
assigned as 4+ state.
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Discussion

2+
1 , 4+

1 : Doubly magic nature in 78Ni is preserved

Neutron Number, N
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Beyond mean-field calculation (S. Péru)
based on finite-range Gogny interaction
S. Péru and M. Martini, EPJA 50, 88 (2014)

LNPS
Large scale shell model (Strasbourg)
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Discussion

What can be the origin of 2+
2 state?
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PFSDG-U Large scale shell model (Strasbourg): pf (proton) and sdg (neutron)
F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)

A3DA-m
Monte Carlo shell model (Tokyo): pf-g9/2 -d5/2 orbitals for both proton and neutron
Y. Tsunoda et al., Phys. Rev. C 89, 031301(R) (2014)

MCSM New Monte Carlo shell model (Tokyo): pfgds shells for both proton and neutron
Y. Tsunoda et al., Private communication

Spherical Deformed Spherical Deformed Spherical
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Discussion

Average numbers of particle-hole (p-h) excitations
Comparison in three calculations, for spherical (sp) and collective (c) states.

PFSDG-U MSCM IM-SRG
Ex nπp-h nνp-h Ex nπp-h nνp-h Ex nπp-h nνp-h

0+
sp 0.00 0.56 0.38 0.00 0.39 0.65 0.00 0.67 0.39

2+
sp 3.15 1.47 1.55 2.57 0.91 1.67 3.25 0.85 1.34

4+
sp 3.66 1.14 1.40 3.26 0.69 1.44 3.63 — —

0+
c 2.65 2.35 2.70 2.61 2.54 2.72 — — —

2+
c 2.88 2.22 2.51 2.88 2.54 2.72 — — —

4+
c 3.44 2.49 2.72 3.43 2.52 2.73 — — —

The unit of the excitation energy, Ex , of each state is MeV.
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Discussion

Reaction selectivity for collective states

This is still an open question:
The spectroscopic factor for the (p, 2p) and two-nucleon amplitude
for the (p, 3p) in the calculations prefers populating spherical states
rather than deformed states.
No theory for explaining the mechanism of the (p, 3p) reaction is
available.

In a naive picture...
In 1p knockout reaction, 1p-1h (particle-hole) may be favored.
While, the final state of 2p removal reaction may be more connected
to 2p-2h and more particle-hole excitations.

Z = 28

80Zn(p,3p)78Ni

Z = 28

79Cu(p,2p)78Ni
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Discussion

Low inclusive cross sections of 78Ni

The reaction cross sections (inclusive cross sections, σincl ) were
also investigated.

The cross section to produce 78Ni were found as almost 4 times
lower than other isotones.

Reaction σincl (mb)
79Cu→ 78Ni -1p 1.7(4)
80Zn→ 79Cu -1p 8.0(3)
81Ga→ 80Zn -1p 5.2(3)
82Ge→ 81Ga -1p 7.5(9)
80Zn→ 78Ni -2p 0.016(6)

81Ga→ 79Cu -2p 0.061(5)
82Ge→ 80Zn -2p 0.067(8)
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Discussion

Quasi-free (p, 2p) reaction theory

DWIA (distorted-wave impulse approximation) calculation (K.Ogata)
for 79Cu(p, 2p)78Ni reaction[1].

Reproduced well for the reaction cross section of neutron-rich
oxygen isotopes with shell-model calculations with SFO interaction
in p and sd shells[2].

Product of spectroscopic factor C2S from shell-model and
single-particle cross section σsp as below:

σth(j, α) = C2S(j, α) · σsp(j,S(α))

[1] T. Wakasa et al., Prog. Part. Nucl. Phys. 96, 31-87 (2017)
[2] S. Kawase et al., Prog. Theor. Exp. Phys. 2018, 021D01 (2018)
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Discussion

Most final states after the reaction may be unbound

Integrated cross-section
Partial cross-section

a Experiment

b LSSM

c MCSM

d IM-SRG
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Contribution of f5/2

Contribution of f7/2
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Evolutions of running sum (black line) in
experiment and theory are in consistent
up to 5 MeV.

Most strength above neutron separation
energy Sn in MCSM.

Confirmed the understanding of the
(p, 2p) reaction with the DWIA
calculation
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Conclusion and outlook
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Conclusion and outlook

Conclusion and outlook

Conclusion of this work
Strong γ-ray transition at 2600(33) keV was confirmed as the first
excitation state.

The agreement with several calculations showed the doubly magic
nature in 78Ni

A finding of second 2+ state at 2910(43) keV in the (p, 3p) reaction
suggested the shape coexistence in 78Ni

Future outlook

Spectroscopic measurement beyond 78Ni is desired.

To investigate the shape coexistence, the measurement of 0+
2 state

in 78Ni should also be considered.

The development of the understandings of the reaction mechanism
for the (p, 3p) is also desired.
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Backup

Evolution of spectra with γ-ray multiplicity conditions

81Ga(p, 2p)80Zn
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Backup

Evolution of spectra with time conditions of DALI2
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Backup

Simulated response function of DALI2

The detector response was
evaluated with GEANT4
Monte-Carlo simulation
package

Energy resolution for each
scintillator was determined by
soure measurements

Calibration sources 60Co, 88Y,
and 137Cs

Background events were fitted
by double-exponential function
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Backup

Vertex reconstruction and target tichkness
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Backup

Calibration of γ-ray spectrometer
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