${ }^{78}$ Ni revealed as a doubly magic stronghold against nuclear deformation

R. Taniuchi ${ }^{1,2}$, C. Santamaria ${ }^{2,3}$, P. Doornenbal ${ }^{2, *}$, A. Obertelli ${ }^{2,3,4}$, K. Yoneda ${ }^{2}$, G. Authelet ${ }^{3}$, H. Baba ${ }^{2}$, D. Calvet ${ }^{3}$, F. Château ${ }^{3}$, A. Corsi ${ }^{3}$, A. Delbart ${ }^{3}$, J.-M. Gheller ${ }^{3}$, A. Gillibert ${ }^{3}$, J. D. Holt ${ }^{5}$, T. Isobe ${ }^{2}$, V. Lapoux ${ }^{3}$, M. Matsushita ${ }^{6}$, J. Menéndez ${ }^{6}$, S. Momiyama ${ }^{1,2}$, T. Motobayashi ${ }^{2}$, M. Niikura ${ }^{1}$, F. Nowacki ${ }^{7}$, K. Ogata ${ }^{8}{ }^{9,9}$, H. Otsu ${ }^{2}$, T. Otsuka ${ }^{1,2,6}{ }^{2}$, C. Péron ${ }^{3}$, S. Péru ${ }^{10}$, A. Peyaud ${ }^{3}$, E. C. Pollacco ${ }^{3}$, A. Poves ${ }^{11}$, J.-Y. Rousse ${ }^{3}$, H. Sakurai ${ }^{1,2}$, A. Schwenk ${ }^{4,12,13}$, Y. Shiga ${ }^{2,14}$, J. Simonis ${ }^{4}, 12,15$, S. R. Stroberg ${ }^{5}, 16$, S. Takeuchi ${ }^{2}$, Y. Tsunoda ${ }^{6}$, T. Uesaka ${ }^{2}$, H. Wang ${ }^{2}$, F. Browne ${ }^{17}$, L. X. Chung ${ }^{18}$, Z. Dombradi ${ }^{19}$, S. Franchoo ${ }^{20}$, F. Giacoppo ${ }^{21}$, A. Gottardo ${ }^{20}$, K. Hadyńska-Klęk ${ }^{21}$, Z. Korkulu ${ }^{19}$, S. Koyama ${ }^{1,2}$, Y. Kubota ${ }^{2,6}$, J. Lee ${ }^{22}$, M. Lettmann ${ }^{4}$, C. Louchart ${ }^{4}$, R. Lozeva ${ }^{7}, 23$, K. Matsuil ${ }^{1,2}$, T. Miyazaki ${ }^{1,2}$, S. Nishimura ${ }^{2}$, L. Olivier ${ }^{20}$, S. Ota ${ }^{6}$, Z. Patel ${ }^{24}$, E. Șahin ${ }^{21}$, C. Shand ${ }^{24}$, P.-A. Söderström ${ }^{2}$, I. Stefan ${ }^{20}$, D. Steppenbeck ${ }^{6}$, T. Sumikama ${ }^{25}$, D. Suzuki ${ }^{20}$, Z. Vajta 19, V. Werner ${ }^{4}$, J. Wu ${ }^{2,26}$ \& Z. Y. Xu ${ }^{22}$

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus ${ }^{78} \mathrm{Ni}$, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with ${ }^{78} \mathrm{Ni}$ as the turning point.

Outline of this work

- First spectroscopy on ${ }^{78} \mathrm{Ni}$ has been performed at RIBF, RIKEN.
- Excited states of ${ }^{78} \mathrm{Ni}$ were obtained by combination of the two key detectors; DALI2 γ-ray spectrometer and MINOS liquid hydrogen system.
- Doubly shell-closure of ${ }^{78} \mathrm{Ni}$ has been confirmed.
- At the same time, emergence of shape-coexistence nature in ${ }^{78} \mathrm{Ni}$ has been suggested, resulting in the possible quenching of neutronand proton-shell gaps beyond this anchor point.

News and Views in the same issue

A doubly magic nucleus that has two faces

The neutron-rich nickel nucleus ${ }^{78} \mathrm{Ni}$ is difficult to excite and, once excited, has competing spherical and deformed shapes. These intriguing properties make ${ }^{78} \mathrm{Ni}$ a valuable testing ground for nuclear theory. See Article p. 53
 gaUte hagen \& thomas papenbrock

Figure 1 | Properties of the nickel nucleus ${ }^{78} \mathrm{Ni}$. Taniuchi et al. ${ }^{1}$ report transitions of ${ }^{78} \mathrm{Ni}$ between excited states and the ground state. An excited

RIKEN＇s top page

```
www.riken.jp/ja-JP/
```

>交通アクセス > お閣い合わせ >サイトマッブ >サイト活用カイド > English

注目のイベント

ブレスリリース	Linss	トピックス	－miss
2019年5月2日		2019年4月26日	
魔法数研究に金字塔		中国杭州未来科技域に天然物ヶミ力ルバイオロジ一連携研究室を設置	

2019年4月27日
篤27回SPring－8／SACLA 梳設公盟 E

2019年5月19日
理研DAY：研究者と話そう！
イベントー覧

Table of Contents

(1) Outline of this work
(2) Motivation
(3) Experiment
4. Result of the spectroscopy
(5) Discussion

6 Conclusion and outlook

Table of Contents

(4) Outline of this work

(2) Motivation
(3) Experiment
4. Result of the spectroscopy
(5) Discussion

6 Conclusion and outlook

Nucleus: a quantum many-body system

- A picture of nuclear structure: nucleons in single particle states
- Large gaps at 2, 8, 20, 28, $50, \cdots$, reproduced by a spin-orbit interaction in a Woods-Saxon type potential
- Magic numbers are the numbers of proton and neutron at shell-closure

- $28,50, .$. are the numbers induced by spin-orbit splittings

How to determine the shell closures?

- Systematic trend of mass difference is a direct indication of the ground state property.
- Two-neutron separation energy, $S_{2 n}$, are shown. Sudden drops above $N=50$ gap are evident.
- It's hard to reach exotic region.

How to determine the shell closures?

- Systematic trend of mass difference is a direct indication of the ground state property.
- Two-neutron separation energy, $S_{2 n}$, are shown. Sudden drops above $N=50$ gap are evident.
- It's hard to reach exotic region.

- Instead, the excitation energy works as a good indicator of shell closure and single particle energies.
- The energy of first 2^{+}state of even-even nuclei is rather commonly used for a first clue of shell-closure.

$E\left(2_{1}^{+}\right)$systematics among the nuclear chart

- The energy $E\left(2^{+}\right)$is a good indicator of the shell closure.
- ${ }^{78} \mathrm{Ni}$ is the only candidate of the unobserved neutron-rich particle-bound doubly magic nuclei.
- Aim of this work: First γ-ray spectroscopy of doubly magic ${ }^{78} \mathrm{Ni}$.

(Evaluation of the drip line from J. Erler et al., Nature 486, 509-512 (2012))

"Magic numbers" are not universal

Emergence of a new magic numbers

Appearance of shell-closure along calcium isotopes in ${ }^{52,54} \mathrm{Ca}$ was confirmed by high excitation energies $E\left(2^{+}\right)$. This indicates new magic numbers: $N=32,34$.

(Figure from D. Steppenbeck et al., Nature 502, 207-210 (2013))

Disappearance of magic number

Low excitation energy of ${ }^{42} \mathrm{Si}$ indicates the $N=28$ shell closure has been collapsed in much less proton nuclei.

(Figure from B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007))

What is the driving force of the "rearrangement"?

- Tensor term was pointed out as a major reason for modifying these shell gaps. It works between protons and neutrons as reducing the spin-orbit splitting.
- Toward ${ }^{78} \mathrm{Ni}$, the $Z=28$ gap are expected to be reduced by filling neutrons in $g_{9 / 2}$ shell up to $N=50$.
- While, the $N=50$ gap is assumed to be collapsed in less proton nuclei $Z<28$, below ${ }^{78} \mathrm{Ni}$.

b: F. Nowacki et al. Phys. Rev. Lett. 117, 272501 (2016)

Experimental studies of ${ }^{78} \mathrm{Ni}$

Benchmarking the nuclear structure in the most neutron-rich doubly magic nuclei

- First production at GSI: 3 counts in 5.5 days [1].
- First β-decay halflife $T_{1 / 2}$ measurement at NSCL: 11 counts in 4.3 days [2].
- Halflife measurement at RIBF: 4000 counts in 7.5 days [3].
\rightarrow Indication of magicity

[1] Ch. Engelmann et al., Z. Phys. A 352, 351-352 (1995)
[2] P.T. Hosmer et al., Phys. Rev. Lett. 94, 112501 (2005)
[3] Z.Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014)

Theoretical predictions along $Z=28$ chain

- Most theoretical calculations predict the $E\left(2^{+}\right)$at around 3 MeV , suggesting the doubly shell-closure of ${ }^{78} \mathrm{Ni}$.

—A3DA-m solid: 2^{+}, dashed 4^{+}
Monte Carlo shell model (Tokyo)
$p f-g_{g / 2}-d_{5 / 2}$ orbitals for both proton and neutron Y. Tsunoda et al., Phys. Rev. C 89, 031301(R) (2014)
---LNPS
Large scale shell model (Strasbourg) pf (proton) and $f_{5 / 2}-p_{1 / 2,3 / 2 / 2,}-d_{5 / 2}$ orbitals (neutron)
S. Lenzi et al., Phys. Rev. C 82, 054301 (2010)
--.PFSDG-U
Large scale shell model (Strasbourg)
pf (proton) and sdg (neutron)
F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)
— QRPA
Beyond mean-field calculation (S. Péru) based on finite-range Gogny D1S interaction S. Péru and M. Martini, EPJA 50, 88 (2014)
..... 5DCH (5-dimensional collective hamiltonian)
J.P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

Shape coexistence in ${ }^{78} \mathrm{Ni}$

- Potential energy surface in the $\beta-\gamma$ plane illustrates axial and triaxial quadrupole deformation
- Respective large scale shell model calculatons indicate controversial results

A3DA-m Monte Carlo shell model (Tokyo): pf- $g_{9 / 2}-d_{5 / 2}$ orbitals for both proton and neutron Y. Tsunoda et al., Phys. Rev. C 89, 031301(R) (2014)

PFSDG-U Large scale shell model (Strasbourg): pf (proton) and sdg (neutron) F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)

Other studies around ${ }^{78} \mathrm{Ni}$

${ }^{80} \mathrm{Zn}$ Coulomb excitation: J. Van De Walle et al., Phys. Rev. Lett 99, 142501 (2007)
${ }^{80}$ Zn spectroscopy: Y. Shiga et al., Phys. Rev. C 93, 024320(2016)
${ }^{79} \mathrm{Cu}$ spectroscopy: L. Olivier et al., Phys. Rev. Lett. 119, 192501(2017)
${ }^{66} \mathrm{Cr}$

Weakening of $\mathbf{N}=\mathbf{5 0}$ shell gap?

$\mathrm{E}(2+)$ of ${ }^{66} \mathrm{Cr},{ }^{70,72} \mathrm{Fe}$: C. Santamaria et al., Phys. Rev. Lett. 115, 192501 (2015)
Shape coexistence emerges in 78 Ni ?
β-delayed conversion electron of ${ }^{80} \mathrm{Ge}$: A. Gottardo et al., Phys. Rev. Lett 116, 182501(2016)
Isomer shift of ${ }^{79} \mathrm{Zn}$: X.F. Yang et al., Phys. Rev. Lett. 116, 182502(2016)

Table of Contents

(4) Outline of this work

(2) Motivation
(3) Experiment
4. Result of the spectroscopy
(5) Discussion

6 Conclusion and outlook

Two-step reaction to populate excited states of ${ }^{78} \mathrm{Ni}$

- Primary ${ }^{238} \mathrm{U}$ with $345 \mathrm{MeV} / u$ at an average intensity of $\mathbf{1 3} \mathrm{pnA}$
- Secondary beam from in-flight fission of ${ }^{238} \mathrm{U}$ collected by BigRIPS
- A secondary target and a γ-ray spectrometer were installed in the midst of magnetic spectrometers, F8
- ${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}$ and ${ }^{80} \mathrm{Zn}(p, 3 p)^{78} \mathrm{Ni}$ reactions
\therefore

IRC

FO Production target
F2

$B \rho-\Delta E-$ TOF method applied for PID

Observations

- Velocity β : Deduced from TOF (Time of flight)

$$
\beta=\frac{L}{c} \cdot \frac{1}{T O F}
$$

- Atomic number Z : Deduced from β and energy loss ΔE

$$
-\frac{d E}{d x}=\frac{4 \pi}{m_{e} c^{2}} \cdot \frac{z^{2}}{\beta^{2}} \cdot\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \cdot n\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I\left(1-\beta^{2}\right)}\right)-\beta^{2}\right]
$$

- Mass-to-charge ratio A / Q : From β and magnetic rigidity $B \rho$

$$
\gamma m \frac{v^{2}}{\rho}=Q v B, \quad B \rho=\frac{\gamma m v}{Q}=\frac{\beta \gamma c m_{u}}{e} \cdot \frac{A}{Q}
$$

Beamline detectors for particle identification

Detectors

- TOF: Timings between plastic scintillators location: both ends of each spectrometer (F3, F7, F8, and F11)
- ΔE : Energy loss was obtained by MUSIC (multi-sampling ionization chamber)
location: end of each spectrometer (F7 and F11)
- B : Positions and angles were obtained by PPAC (position-sensitive Parallel Plate Avalanche Counters) location: dispersive (F5, F9) and achromatic (F3, F7, F8, and F11) foci

Obtained particle identification plots

PID in upstream (BigRIPS)
${ }^{79} \mathrm{Cu}: 5.2$ particles/s
${ }^{80} \mathrm{Zn}$: 290 particles/s

PID in downstream (ZeroDegree)
${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}: 937$ evts
${ }^{80} \mathrm{Zn}(p, 3 p)^{78} \mathrm{Ni}: 815$ evts

Secondary reaction target and γ-ray detector array

- Thick liquid hydrogen target (MINOS): Tracks of the recoil protons were obtained to reconstuct the reaction vertices. $\Delta x \sim 5 \mathrm{~mm}$.
- High-efficiency scintillator array (DALI2): Intrinsic resolution and efficiency were 10% and 20% for $1 \mathrm{MeV} \gamma$-ray from moving system.

Doppler broadening in in-beam γ-ray spectroscopy

Uncertainty of the γ-ray energy from Doppler broadening should be taken into accont to gain the luminosity by employing thick secondary target.

$$
\frac{E_{\gamma}}{E_{\gamma_{0}}}=\frac{\sqrt{1-\beta^{2}}}{1-\beta \cos \theta_{\gamma}}, \quad \delta_{\text {tot. }}^{2}=\left(\frac{\Delta E_{\gamma_{0}}}{E_{\gamma_{0}}}\right)^{2}=\delta_{\theta}^{2}+\delta_{\beta}^{2}+\delta_{\text {intr. }}^{2} .
$$

10-cm liquid hydrogen
without vertex reconstruction

$10-\mathrm{cm}$ liquid hydrogen with
vertex reconstruction

Vertex image reconstructed by MINOS

- Determine the vertex position by two protons and beam trajectory

Spectra of ${ }^{80} \mathrm{Zn}$ via $(p, 2 p)$ and ($p, 3 p$) reactions

Spectra of ${ }^{79} \mathrm{Cu}$ via $(p, 2 p)$ and $(p, 3 p)$ reactions

Table of Contents

(4) Outline of this work

(2) Motivation
(3) Experiment

4 Result of the spectroscopy
(5) Discussion

6 Conclusion and outlook

Different γ-ray populations in respective reactions

While a strong γ-ray population at 2600 keV can be seen in the $(p, 2 p)$ reaction, another 2900-keV transition is observed in the $(p, 3 p)$ channel.

Strategy for analyzing the γ-ray spectra of respective reaction channels

- Analyze spectrum of each reaction channel, $(p, 2 p)$ and $(p, 3 p)$, individually.
- Energy determination of the peaks: maximum likelihood, using multi-dimensional probability function.
- Significance levels: p-test deduced by likelihood-ratio.
- Reconstruction of energy levels: intensity relationship and $\gamma-\gamma$ analysis.

The ${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}$ channel

Spectrum with 80 keV binning
p2p (m<6)

Spectrum with 40 keV binning
p2p (m<6)

The ${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}$ channel

Spectrum with 80 keV binning

- Maximum likelihood with 5 response functions and a double-exponential function

The ${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}$ channel

Spectrum with 80 keV binning

- Result with 1 s.d. error of E_{γ} and relative intensity $I_{\text {rel }}$
- Significance levels were deduced from p-test

$E_{\gamma}(\mathrm{keV})$	$I_{\text {rel }}(\%)$	$\mathrm{S} . \mathrm{L}$.
$583(10)$	$49(11)$	5.3
$1103(14)$	$49(12)$	4.3
$1540(25)$	$28(11)$	2.6
$2110(48)$	$33(13)$	2.9
$2600(33)$	$100(15)$	7.5

The ${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}$ channel

Spectrum with 80 keV binning

- Result with 1 s.d. error of E_{γ} and relative intensity $I_{\text {rel }}$
- Significance levels were deduced from p-test

$E_{\gamma}(\mathrm{keV})$	$I_{\text {rel }}(\%)$	$\mathrm{S} . \mathrm{L}$.
$583(10)$	$49(11)$	5.3
$1103(14)$	$49(12)$	4.3
$1540(25)$	$28(11)$	2.6
$2110(48)$	$33(13)$	2.9
$2600(33)$	$100(15)$	7.5
$2910(43)$	-	1.2

$\gamma-\gamma$ coincidence analysis

All low-lying transitions are feeding the 2600 keV state

- $\gamma-\gamma$ coincidence spectrum after gating with 2600 keV transition
- All four low-lying states are in coincidence.
- No background events were subtracted

$\gamma-\gamma$ coincidence analysis

No coincidence between 583 keV and 1103 keV

The ${ }^{80} \mathrm{Zn}(p, 3 p)^{78}$ Ni channel

High lying transition at 2900 keV

The ${ }^{80} \mathrm{Zn}(p, 3 p)^{78} \mathrm{Ni}$ channel

High lying transition at 2900 keV

- A transition at 2910(43) keV was found, which was not seen in the $(p, 2 p)$ reaction
- Enhancement at lower γ-ray multiplicity condition and the large intensity are seen

$E_{\gamma}(\mathrm{keV})$	$I_{\text {rel }}(\%)$	S. L.
$581(16)$	$46(19)$	1.8
$1067(17)$	$84(26)$	3.5
$2710(200)$	$48(30)$	1.4
$2910(43)$	$100(29)$	3.7

Evolution of $I_{\text {rel }}$ and significance levels with γ-ray multiplicity

Obtained level scheme of ${ }^{78} \mathrm{Ni}$

- Black and blue transitions were observed in the $(p, 2 p)$ and $(p, 3 p)$ reactions, respectively.
- Solid line: Significance level $\geq 5 \sigma$
- The most strong transitions at 2600 keV and 2900 keV in respective reactions are tentatively assigned as 2^{+}states feeding the ground state directly.
- The state at 3180 keV is tentatively assigned as 4^{+}state.

Table of Contents

(7) Outline of this work

(2) Motivation
(3) Experiment
4. Result of the spectroscopy
(5) Discussion

6 Conclusion and outlook

$2_{1}^{+}, 4_{1}^{+}$: Doubly magic nature in ${ }^{78} \mathrm{Ni}$ is preserved

- Literature 2^{+}o Literature 4^{+}
* This work 2^{+}¿ This work 4^{+}
—A3DA-m solid: 2^{+}, dashed 4^{+}
Monte Carlo shell model (Tokyo)
$p f-g_{9 / 2}-d_{5 / 2}$ orbitals for both proton and neutron Y. Tsunoda et al., Phys. Rev. C 89, 031301(R) (2014)
--. LNPS
Large scale shell model (Strasbourg)
pf (proton) and $f_{5 / 2}-p_{1 / 2,3 / 2}-d_{5 / 2}$ orbitals (neutron)
S. Lenzi et al., Phys. Rev. C 82, 054301 (2010)
--.PFSDG-U
Large scale shell model (Strasbourg) $p f$ (proton) and $s d g$ (neutron)
F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)
- QRPA

Beyond mean-field calculation (S. Péru) based on finite-range Gogny interaction S. Péru and M. Martini, EPJA 50, 88 (2014)

What can be the origin of 2_{2}^{+}state?

Average numbers of particle-hole ($p-h$) excitations

Comparison in three calculations, for spherical ($s p$) and collective (c) states.

	PFSDG-U			MSCM				IM-SRG		
	E_{x}	n_{p-h}^{π}	n_{p-h}^{ν}	E_{x}	n_{p-h}^{π}	n_{p-h}^{ν}	E_{x}	n_{p-h}^{π}	n_{p-h}^{ν}	
$0_{s p}^{+}$	0.00	0.56	0.38	0.00	0.39	0.65	0.00	0.67	0.39	
$2_{s p}^{+}$	3.15	1.47	1.55	2.57	0.91	1.67	3.25	0.85	1.34	
$4_{s p}^{+}$	3.66	1.14	1.40	3.26	0.69	1.44	3.63	-	-	
0_{c}^{+}	2.65	2.35	2.70	2.61	2.54	2.72	-	-	-	
2_{c}^{+}	2.88	2.22	2.51	2.88	2.54	2.72	-	-	-	
4_{c}^{+}	3.44	2.49	2.72	3.43	2.52	2.73	-	-	-	

The unit of the excitation energy, E_{x}, of each state is MeV .

Reaction selectivity for collective states

This is still an open question:

- The spectroscopic factor for the ($p, 2 p$) and two-nucleon amplitude for the $(p, 3 p)$ in the calculations prefers populating spherical states rather than deformed states.
- No theory for explaining the mechanism of the $(p, 3 p)$ reaction is available.

Reaction selectivity for collective states

This is still an open question:

- The spectroscopic factor for the ($p, 2 p$) and two-nucleon amplitude for the $(p, 3 p)$ in the calculations prefers populating spherical states rather than deformed states.
- No theory for explaining the mechanism of the $(p, 3 p)$ reaction is available.
In a naive picture...
- In $1 p$ knockout reaction, $1 p$ - $1 h$ (particle-hole) may be favored.
- While, the final state of $2 p$ removal reaction may be more connected to $2 p-2 h$ and more particle-hole excitations.

${ }^{79} \mathrm{Cu}(\mathrm{p}, 2 \mathrm{p})^{78} \mathrm{Ni}$

${ }^{80} \mathrm{Zn}(p, 3 p)^{78} \mathrm{Ni}$

Low inclusive cross sections of ${ }^{78} \mathrm{Ni}$

- The reaction cross sections (inclusive cross sections, $\sigma_{i n c l}$) were also investigated.
- The cross section to produce ${ }^{78} \mathrm{Ni}$ were found as almost 4 times lower than other isotones.

Reaction	$\sigma_{\text {incl }}(\mathrm{mb})$	
${ }^{79} \mathrm{Cu} \rightarrow{ }^{78} \mathrm{Ni}$	-1 p	$1.7(4)$
${ }^{80} \mathrm{Zn} \rightarrow{ }^{79} \mathrm{Cu}$	-1 p	$8.0(3)$
${ }^{81} \mathrm{Ga} \rightarrow{ }^{80} \mathrm{Zn}$	-1 p	$5.2(3)$
${ }^{82} \mathrm{Ge} \rightarrow{ }^{81} \mathrm{Ga}$	-1 p	$7.5(9)$
${ }^{80} \mathrm{Zn} \rightarrow{ }^{78} \mathrm{Ni}$	-2 p	$0.016(6)$
${ }^{81} \mathrm{Ga} \rightarrow{ }^{79} \mathrm{Cu}$	-2 p	$0.061(5)$
${ }^{82} \mathrm{Ge} \rightarrow{ }^{80} \mathrm{Zn}$	-2 p	$0.067(8)$

Quasi-free $(p, 2 p)$ reaction theory

- DWIA (distorted-wave impulse approximation) calculation (K.Ogata) for ${ }^{79} \mathrm{Cu}(p, 2 p)^{78} \mathrm{Ni}$ reaction[1].
- Reproduced well for the reaction cross section of neutron-rich oxygen isotopes with shell-model calculations with SFO interaction in p and sd shells[2].
- Product of spectroscopic factor $C^{2} S$ from shell-model and single-particle cross section σ_{sp} as below:

$$
\sigma_{\mathrm{th}}(j, \alpha)=C^{2} S(j, \alpha) \cdot \sigma_{\mathrm{sp}}(j, S(\alpha))
$$

[1] T. Wakasa et al., Prog. Part. Nucl. Phys. 96, 31-87 (2017)
[2] S. Kawase et al., Prog. Theor. Exp. Phys. 2018, 021 D01 (2018)

Most final states after the reaction may be unbound

- Evolutions of running sum (black line) in experiment and theory are in consistent up to 5 MeV .
- Most strength above neutron separation energy S_{n} in MCSM.
- Confirmed the understanding of the $(p, 2 p)$ reaction with the DWIA calculation

Table of Contents

(4) Outline of this work

(2) Motivation
(3) Experiment
4. Result of the spectroscopy
(5) Discussion

6 Conclusion and outlook

Conclusion and outlook

Conclusion of this work

- Strong γ-ray transition at 2600(33) keV was confirmed as the first excitation state.
- The agreement with several calculations showed the doubly magic nature in ${ }^{78} \mathrm{Ni}$
- A finding of second 2^{+}state at $2910(43) \mathrm{keV}$ in the $(p, 3 p)$ reaction suggested the shape coexistence in ${ }^{78} \mathrm{Ni}$

Conclusion and outlook

Conclusion of this work

- Strong γ-ray transition at 2600(33) keV was confirmed as the first excitation state.
- The agreement with several calculations showed the doubly magic nature in ${ }^{78} \mathrm{Ni}$
- A finding of second 2^{+}state at $2910(43) \mathrm{keV}$ in the $(p, 3 p)$ reaction suggested the shape coexistence in ${ }^{78} \mathrm{Ni}$

Future outlook

- Spectroscopic measurement beyond ${ }^{78} \mathrm{Ni}$ is desired.
- To investigate the shape coexistence, the measurement of O_{2}^{+}state in ${ }^{78} \mathrm{Ni}$ should also be considered.
- The development of the understandings of the reaction mechanism for the $(p, 3 p)$ is also desired.

Backup slides

Evolution of spectra with γ-ray multiplicity conditions

Evolution of spectra with time conditions of DALI2

Simulated response function of DALI2

- The detector response was evaluated with GEANT4 Monte-Carlo simulation package
- Energy resolution for each scintillator was determined by soure measurements
- Calibration sources ${ }^{60} \mathrm{Co},{ }^{88} \mathrm{Y}$, and ${ }^{137} \mathrm{Cs}$
- Background events were fitted by double-exponential function

- Test case with source measurement with ${ }^{137} \mathrm{Cs}$ (662 keV)

Vertex reconstruction and target tichkness

Calibration of γ-ray spectrometer

