Experiment of An Interaction Measurement via the Final State Interaction in $\gamma d \rightarrow K^+ \Lambda n$ Reaction

Masashi Kaneta for the NKS2 Collaboration

Department of Physics, Graduate School of Science, Tohoku University

2019/May/20

Radiation-Lab Seminar

Overview

- Motivation of Λn interaction measurement
- NKS2 experiment at ELPH, Tohoku Univ.
- An final-state-interaction study by NKS2
- Detector R&D
- Summary of Λn FSI exp.
- The other projects in Tohoku ELS group
 - JLab, Mainz, ELPH

Study of nuclear force

- Baryon-Baryon interaction including strangeness
- Experimental study
 - Spectroscopy of Hypernuclei
 - lots of data
 - ΛN scattering experiment at low energies
 - poor and limited accuracy of Λp data
 - lack of Λn data

- Study of nuclear force
 - Baryon-Baryon interaction including strangeness
 - Experimental study
 - Spectroscopy of Hypernuclei
 - lots of data
 - ΛN scattering experiment at low energies
 - poor and limited accuracy of Λp data
 - lack of Λn data
 - Mass difference of ${}^{4}\Lambda H$ and ${}^{4}\Lambda He$
 - Interaction of Λn is the same with Λp ?

Figure from Prof. Tamura

- Study of nuclear force
 - Baryon-Baryon interaction including strangeness
 - Experimental study
 - Spectroscopy of Hypernuclei
 - lots of data
 - ΛN scattering experiment at low energies
 - poor and limited accuracy of Λp data
 - lack of Λn data
 - Mass difference of ⁴_ΛH and ⁴_ΛHe
 Interaction of Λ*n* is the same with Λ*p*?

Figure from Prof. Tamura

K⁺ cross section in γd → K⁺Λn reaction
 Modification by FSI effect of Λn

Charge symmetry breaking (CSB) in the ΛN interaction

[1] M. Juric *et al.*, NPB52 (1973) 1
[2] M. Bedjidain *et al.*, PLB83 (1979) 252
[3] E. Hiyama *et al.*, PRC65 (2001) 011301
[4] R.A. Brandenburg *et al.*, PRC37 (1988) 781

Energy scheme of A=4 Λ hypernuclei before results of Tohoku group at Mainz and J-PARC

Charge symmetry breaking (CSB) in the ΛN interaction

- AN CSB ~0.35 MeV in data
 - Emulsion data
 - Theoretical calculation: ~0.05 MeV
 - NN CSB ~0.07 MeV [4]

Energy scheme of A=4 Λ hypernuclei before results of Tohoku group at Mainz and J-PARC

Binding Energy [MeV]

Charge symmetry breaking (CSB) in the ΛN interaction

- AN CSB ~0.35 MeV in data
 - Emulsion data
 - Theoretical calculation: ~0.05 MeV
 - NN CSB ~0.07 MeV [4]
 - For precise data
 - Mainz A1 Hypernuclear coll.
 - J-PARC E13 coll.
 - JLab (*e*, *e*'*K*) exp.

M. Juric *et al.*, NPB52 (1973) 1
 M. Bedjidain *et al.*, PLB83 (1979) 252
 E. Hiyama *et al.*, PRC65 (2001) 011301
 R.A. Brandenburg *et al.*, PRC37 (1988) 781

Energy scheme of A=4 Λ hypernuclei before results of Tohoku group at Mainz and J-PARC

Binding Energy [MeV]

Charge symmetry breaking (CSB) in the ΛN interaction

- AN CSB ~0.35 MeV in data
 - Emulsion data
 - Theoretical calculation: ~0.05 MeV
 - NN CSB ~0.07 MeV [4]
 - For precise data
 - Mainz A1 Hypernuclear coll.
 - J-PARC E13 coll.
 - JLab (*e*, *e*'*K*) exp.

M. Juric *et al.*, NPB52 (1973) 1
 M. Bedjidain *et al.*, PLB83 (1979) 252
 E. Hiyama *et al.*, PRC65 (2001) 011301
 R.A. Brandenburg *et al.*, PRC37 (1988) 781

Energy scheme of A=4 Λ hypernuclei before results of Tohoku group at Mainz and J-PARC

4

Mainzer-Microtron: MAMI

Detector system and optical properties will be found in http://wwwa1.kph.uni-mainz.de/A1/detector.html http://wwwa1.kph.uni-mainz.de/A1/magnet.html

Setup at A1 Hall

Result from MAMI

 $B_{\Lambda} = 2.12 \pm 0.01 \pm 0.09 \text{ MeV}$

Result from MAMI

No.

Study of nuclear force

- Baryon-Baryon interaction including strangeness
- Experimental study
 - Spectroscopy of Hypernuclei
 - lots of data
 - AN scattering experiment at low energies
 - poor and limited accuracy of Λp data
 - lack of Λn data
 - Mass difference of ⁴_ΛH and ⁴_ΛHe
 Interaction of Λ*n* is the same with Λ*p*?

Figure from Prof. Tamura

K⁺ cross section in γd → K⁺Λn reaction
 Modification by FSI effect of Λn

8

Data of Λp

Study of nuclear force

- Baryon-Baryon interaction including strangeness
- Experimental study
 - Spectroscopy of Hypernuclei
 - lots of data
 - AN scattering experiment at low energies
 poor and limited accuracy of Ap data
 - lack of Λn data
 - Mass difference of ⁴_ΛH and ⁴_ΛHe
 Interaction of Λ*n* is the same with Λ*p*?

Figure from Prof. Tamura

K⁺ cross section in γd → K⁺Λn reaction
 Modification by FSI effect of Λn

• FSI effect in γd reaction for $K^+\Lambda$ production

11

• FSI effect in γd reaction for $K^+\Lambda$ production

11

• FSI effect in γd reaction for $K^+\Lambda$ production

11

in Final State Interaction (FSI)

imm

• FSI effect in γd reaction for $K^+\Lambda$ production

11

 Λn interaction in Final State Interaction (FSI)

cross section

is modified

n

• FSI effect in γd reaction for $K^+\Lambda$ production

An interaction in Final State Interaction (FSI)

Using a large acceptance magnetic spectrometer

imm

cross ser

11

Our Experiment: NKS2 at ELPH, Tohoku Univ.

Photon Beam Line

in Research Center of Electron Photon Science (ELPH), Tohoku Univ.

- Tagged photon beam
 - *E*γ = 0.80-1.25 GeV
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto

Acceptance

• Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex

Hodoscopes

- Plastic scintillator + PMT
- Time-Of-Flight (TOF)
- Particle identification combined with momentum
- Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

An Interaction Study by NKS2

FSI seen in JLab

FSI Effect: How looks like in NKS2?

Calculation

- by K. Takahashi of Miyagawa-san's group in Okayama University of Science
 - *K*+ cross-section in $\gamma d \rightarrow K^+ \Lambda n$
 - $E_{\gamma} = 0.95 1.25 \text{ GeV}$
 - $d\sigma/dp_{\kappa}$ in Lab. frame
 - $\theta_K = 0^\circ 20^\circ$

shown in his master's thesis (FY2017)

Okayama University of Sienese

施

20

The effect appeared near the production threshold

- ~10 nb in *E*γ > 1.05 GeV
 - summed over $\theta_{\kappa} = 0^{\circ}-20^{\circ}$
 - enhancement seen in ~10 MeV/c momentum range of K^+

The effect appeared near the production threshold

- ~10 nb in *Eγ* > 1.05 GeV
 - summed over $\theta_{\kappa} = 0^{\circ}-20^{\circ}$
 - enhancement seen in ~10 MeV/c momentum range of K^+

The effect appeared near the production threshold

- ~10 nb in *E*γ > 1.05 GeV
 - summed over $\theta_{\kappa} = 0^{\circ}-20^{\circ}$
 - enhancement seen in ~10 MeV/c momentum range of K^+

• The effect appeared near the production threshold

- ~10 nb in *E*γ > 1.05 GeV
 - summed over $\theta_{\kappa} = 0^{\circ}-20^{\circ}$
 - enhancement seen in ~10 MeV/c momentum range of K^+
- To achieve a few % statistical error of data
 - Assuming the same condition of previous K^{0}_{S} measurement
 - 200 400 days needed to discuss angle dependence
- Electron veto counter makes the beam time shorter

• The effect appeared near the production threshold

• ∧n

- ~10 nb in *E*γ > 1.05 GeV
 - summed over $\theta_{\kappa} = 0^{\circ}-20^{\circ}$
 - enhancement seen in ~10 MeV/c momentum range of K^+
- To achieve a few % statistical error of data
 - Assuming the same condition of previous K^{0}_{S} measurement
 - 200 400 days needed to discuss angle dependence
- Electron veto counter makes the beam time shorter

• Σn

- "cusp" can be seen in $\theta_{\kappa} = 0^{\circ}-10^{\circ}$ and a few nb
 - in $E\gamma \ge 1.05$ GeV

The effect appeared near the production threshold

Electron veto counter makes the beam time shorter

Σn

- "cusp" can be seen in $\theta_{\kappa} = 0^{\circ}-10^{\circ}$ and a few nb
 - in $E\gamma \ge 1.05$ GeV

• The effect appeared near the production threshold

• ∧n

- ~10 nb in *E*γ > 1.05 GeV
 - summed over $\theta_{\kappa} = 0^{\circ}-20^{\circ}$
 - enhancement seen in ~10 MeV/c momentum range of K^+
- To achieve a few % statistical error of data
 - Assuming the same condition of previous K^{0}_{S} measurement
 - 200 400 days needed to discuss angle dependence
- Electron veto counter makes the beam time shorter

• Σn

- "cusp" can be seen in $\theta_{\kappa} = 0^{\circ}-10^{\circ}$ and a few nb
 - in $E\gamma \ge 1.05$ GeV

Detector R&D

Multi-gap Resistive Plate Chamber: MRPC

Design

- Gas: R-134a + SF₆ (90:10)
- 5-gap and double stack

Pre-AMP

- locate closed to MRPC
- including impedance matching

Aerogel Cherenkov Counter for Electron Veto

Design

- n=1.01 for e/π separation (π threshold: p = 1 GeV/c)
- MPPC readout
- R&D is started

Multi-gap Resistive Plate Chamber (MRPC)

0.4th mm soda-lime glass #2 fish line (Ø 0.23mm) 5-gap and double-stack Gas: R-134a+SF₆ (90:10)

 $47 \text{ cm} \times 3.5 \text{ cm strip}$ Readout from both ends

Test version of Pre-AMP

- Impedance matching
- CR differential
- Non-inverse amplifier

Intrinsic resolution ~120 ps

Particle ID with New Counters

Add new counters

Expected m² distribution w/ realistic $\pi/K/p$ yield in $\gamma+d$

Aerogel Cherenkov Counter for Electron Veto

- Aerogel
 - n=1.01
 - Japan Fine Ceramic Center
 - Chiba University (Just derived)
- Photon detector
 - SiPM
 - Candidate
 - HAMAMATSU S13360 series MPPC surface mount type
 - Number of photo-electrons (NPE): ~16
 - photon detection efficiency is considered
 - Confirmed enough NPE by cosmic-ray test
 - PMTs are used in the test
 - Amp, HV supply, connection
 - R&D started

Photo: JFCC aerogel (n=1.01)

Summary of An FSI Experiment

- Λn interaction
 - One of keys to understand YN interaction
 - Mass difference of ${}^4{}_{\Lambda}H$ and ${}^4{}_{\Lambda}He$
 - Λp and Λn are the same?
 - the other effect?
- Upgrade of NKS2 with new detectors
 - measurement of Λn interaction via FSI effect in $\gamma d \rightarrow K^+ \Lambda n$ reaction
 - Mass production of new TOF counter (MRPC) will be started soon
 - R&D of the ACC for electron veto is in progress

This work are supported by

- JSPS KAKENHI Grant-in-Aid for Scientific Research (B) 18H01220
- MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas 6007
- JSPS KAKENHI Grant-in-Aid for Scientific Research (A) 17H01121
- Japan-Germany Research Cooperative Program JSPS/DAAD PPP, Germany 57345295.

The Other Projects

Jefferson Lab

- Hall A collaboration
 - nnA search in $e^- + {}^{3}H \rightarrow e^- + K^+ + X$
 - Ph.D candidate: Kousuke Itabashi (D1)
 - APEX (Dark photon A' search)
 - Iso-spin dependence ΛN by ${}^{40}{}_{\Lambda}K,\,{}^{48}{}_{\Lambda}K$ Hypernuclei
 - Ph.D candidate: Keita Uehara (M2)
- Mainz
 - Precise measurement of beam energy
- ELPH
 - Modification of NKS2
 - Lifetime measurement of ³∧H
 - $\gamma + {}^{3}\text{He} \rightarrow K^{+} + {}^{3}_{\Lambda}\text{H}$
 - Ph.D candidate: Yuichi Toyama (D2)

nn
 A Search

HypHI collaboration

- ⁶Li + C collisions
 - Invariant mass distributions of $d + \pi^{-1}$ and $t + \pi^{-1}$
 - PRC 88 (2013) 041001 (R) reported
 - "the analyses and discussions of the observed final stats of d + π- and t + π- that might be associated with ³∧n"

nnA search at JLab

- Tritium campaign
 - Period: 2017 2018
 - Gas ³H, ²H, H, ³He, target
 - Experiments

28

- EMC effect for ³H and ³He
- Isospin dependence of two-nucleon short range correlations
- Quasi-elastic scattering to measure *p* and *n* momentum distribution
- Charge radius of ³H and ³He
- nn∧ search by (e, e'K+) reaction

JLab Hall A

Photo from https://www.jlab.org/research/hall-a

High Resolution Spectrometer (HRS)

Magnet config.: QQDQ Momentum range: 0.3 - 4.0 GeV/c Momentum acceptance ± 4.5%

Targets during the tritium campaign

JLab

Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Accelerator Facility

Measurement

Figure from K. Itabashi's Master's thesis (slightly modified)

Analysis is in progress

Hyperon Puzzle

Neutron star

- EOS base on 2-body YN interaction can not explain two-solar-mass neutron star
- 3-body ANN force is needed

3-body force in Hypernuclei

Updated from D. Lonardoni et al. PRC 89 (2014) 014314

Note: ΛN interaction is based on Λp data

Parameter C_T gauges the strength and the sign of isospin triplet contribution

Figure 2-6: A Signaration theorgessals calculation at Xix: 1/306014042 arious values of the

Setup

Lifetime of Light Hypernuclei

³∧H puzzle

Вл~0.13 MeV[1]	$\tau = \sim 200 \text{ ps}$
$({}^{4}_{\Lambda}H : B_{\Lambda}=2.12 \text{ MeV}[2])$	$(\tau_{\Lambda} = 263 \text{ ps})$

Figure from Y. Toyama's talk in JPS meeting

Small Λ biding energy Shorter hypernuclei lifetime than free space Λ } Difficult to explain simultaneously

[1] M.Juric *et al.*, Nucl. Phys. **B 52** (1973) 1-30
[2] S.Nagao, Doctoral thesis 2015 Tohoku University, A.Esser, S.Nagao, F.Schulz *et al.*, Phys. Rev. Lett. **114** (2015)222501.

³_AH Lifetime Measurement at ELPH

Figure from Y. Toyama's talk in JPS meeting

- *K*⁺ ID and momentum
 - NKS2 spectrometer + new TOF
- π decay time
 - TDL: Timing counter for Direct Lifetime measurement of hypernuclei

Decay Time Measurement

Summary

- An interaction measurement by FSI
 - Key of understanding ΛN interaction
 - $\gamma + d \rightarrow K^+ \Lambda n$ reaction
 - Preparing for the start of 2020
- The other projects
 - nn∧
 - Analysis is in progress
 - ${}^{40}_{\Lambda}K$, ${}^{48}_{\Lambda}K$: isospin dependence of ΛNN force
 - 2021 start (?)
 - Decay pion spectroscopy
 - ³∧H lifetime
 - 2020 start

38

Study about Ap Interaction

THE EUROPEAN

PHYSICAL JOURNAL A

Eur. Phys. J. A **21**, 313–321 (2004) DOI 10.1140/epja/i2003-10203-3

Analysis of the Λp final-state interaction in the reaction $p+p \to K^+(\Lambda p)$

q

F. Hinterberger^{1,a} and A. Sibirtsev^{2,3}

2.2 Final-state interaction

In the Watson-Migdal approximation [38–40] the FSI is taken into account by introducing a FSI enhancement factor $|C_{\rm FSI}|^2$,

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega_K \mathrm{d}M_{\Lambda p}} = |\mathcal{M}|^2 \, |C_{\mathrm{FSI}}|^2 \, \Phi_3,\tag{3}$$

where now \mathcal{M} is a pure production matrix element and the FSI amplitude C_{FSI} depends on the internal momentum q of the Λp subsystem. It converges to 1 for $q \to \infty$ where the S-wave FSI enhancement vanishes.

$$C_{\rm FSI} = \frac{q - i\beta}{q + i\alpha}, \qquad |C_{\rm FSI}|^2 = \frac{q^2 + \beta^2}{q^2 + \alpha^2}. \tag{4}$$

The potential parameters α and β can be used to establish phase-equivalent Bargmann potentials [44,45]. They are related to the scattering lengths a, and effective ranges rof the low-energy S-wave scattering

$$\alpha = \frac{1}{r} \left(1 - \sqrt{1 - 2\frac{r}{a}} \right), \quad \beta = \frac{1}{r} \left(1 + \sqrt{1 - 2\frac{r}{a}} \right). \quad (5)$$

The Λp system can couple to singlet ${}^{1}S_{0}$ and triplet ${}^{3}S_{1}$ states. Near production threshold the singlet-triplet transitions due to the final-state interaction cannot occur. Therefore, the contributions of the spin-singlet and spin-triplet final states can be added incoherently. Taking the spin-statistical weights into account the unpolarized double differential cross-section may be written as

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega_{K}\mathrm{d}M_{Ap}} = \Phi_{3} \left[0.25 \, |\mathcal{M}_{s}|^{2} \, \frac{q^{2} + \beta_{s}^{2}}{q^{2} + \alpha_{s}^{2}} \right. \\ \left. + 0.75 \, |\mathcal{M}_{t}|^{2} \, \frac{q^{2} + \beta_{t}^{2}}{q^{2} + \alpha_{t}^{2}} \right].$$
(6)

This equation leaves six free parameters, the singlet and triplet potential parameters α_s , β_s , α_t , β_t and the production matrix elements $|\mathcal{M}_s|$ and $|\mathcal{M}_t|$. Instead of the parameters α_s , β_s , α_t and β_t one can equally well use the singlet and triplet scattering length and effective-range parameters a_s , r_s , a_t and r_t . The functional dependence on the invariant mass M_{Ap} can be evaluated by inserting the corresponding expression for the internal momentum q of the Ap system,

$$=\frac{\sqrt{M_{Ap}^{2}-(m_{A}+m_{p})^{2}}\sqrt{M_{Ap}^{2}-(m_{A}-m_{p})^{2}}}{2M_{Ap}}.$$
 (7)

Fig. 4. Same as in fig. 1. Solid lines: Fit curves with parameters given by eq. (15) from a combined five-parameter fit of the missing-mass spectrum and the total-cross-section data, dashed line: phase space distribution, dotted lines: singlet contributions, dash-dotted lines: triplet contributions.

Enhancement Factors of An FSI

	Refs.	a _s [fm]	r _s [fm]	a _t [fm]	rt [fm]
Nijmegen D	PRD15 (1977) 2547	-2.03	3.66	-1.84	3.32
Nijmegen F	PRD20 (1979) 1633	-2.4	3.15	-1.84	3.37
NSC89	PRC40 (1989) 2226	-2.86	2.91	-1.24	3.33
NSC97a	PRC59 (1999) 3009	-0.77	6.09	-2.15	2.71
NSC97b		-0.97	5.09	-2.09	2.8
NSC97c		-1.28	4.22	-2.07	2.86
NSC97d		-1.82	3.52	-1.94	3.01
NSC97e		-2.24	3.24	-1.83	3.14
NSC97f		-2.68	3.07	-1.67	3.34
Jülich A (ΛN)	NPA570 (1994) 543	-1.56	1.43	-1.59	3.16
Jülich A~ (ΛN)		-2.04	0.64	-1.33	3.91
Jülich B (ΛN)		-0.56	7.77	-1.91	2.43
Jülich B~ (ΛN)		-0.4	12.28	-2.12	2.57
Verma	PRC22 (1980) 229	-2.29	3.14	-1.77	3.25
Bhaduri (Set I, ΛN)	PR 155 (1967) 1671	-2.46	3.87	-2.07	4.5

Note: It is assumed that the production matrix of single and triplet are the same.

The shape of the curves

- Enhancement in forward K+
- variations: order of 10%
- Highly accurate measurements are required
 - in order to be able to distinguish among different potential models

H. Yamamura et al., Phys. Rev C61 (1999) 014001

FIG. 2. The inclusive $\gamma(d, K^+)$ cross section as a function of lab momenta p_K for $\theta_K = 0^\circ$ and photon lab energy $E_{\gamma} = 1.3$ GeV. The plane wave result is compared to two YN force predictions. The FSI effects are especially pronounced near the $K^+\Lambda N$ and $K^+\Sigma N$ thresholds, the locations of which are indicated by the arrows.

ALE