Dipole Polarizability from Small-Angle Proton Scattering and Implications for Symmetry Energy Properties and the Formation of Neutron Skins TECHNISCHE UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

- Equation of State (EoS), symmetry energy, neutron skin and dipole polarizability
- Extraction of the E1 strength from small-angle (p,p') scattering
- Polarizability of ⁴⁰Ca
- Implications for the symmetry energy

Supported by DFG under contract SFB 1245 (project id 279384907)

Nuclear Matter Equation of State (EOS)

- Energy as a function of density (or pressure)
- Well defined at $\rho/\rho_0 = 1$ by properties of stable nuclei
- Large differences of models at high densities: stiff or soft?

EoS of Neutron-Rich Matter

Neutron Stars

A. Watts et al., RMP 88, 021001 (2016)

Core-Collapse Supernovae

H. Yasin et al., PRL 124, 092701 (2020)

Neutron Star Properties

A. Bauswein et al., ApJ Lett. 885, L34 (2017)

Neutron Star Mergers

B.P. Abbott et al., PRL 119, 161101 (2017)

DARMSTADT $B(A,Z) = a_v A - a_s A^{2/3} - a_c Z(Z-1)/A^{1/3} - a_{sym}(A-2Z)^2/A + \delta$ volume surface Coulomb symmetry pairi pairing symmetry AVERAGE BINDING ENERGY PER 8 (MeV) 6 NUCLEON 5 4 3 20 8 12 16 20 24 4 30 60 90 120 150 180 210 240 MASS NUMBER A

Binding Energy of Nuclei

TECHNISCHE

UNIVERSITÄT

Binding Energy of (Infinite) Neutron Matter

- For (infinite) neutron matter only volume and symmetry term contribute to the energy of the system.
- The volume term can be estimated from the saturation properties
- The symmetry energy represents the largest uncertainty for the EOS of neutron matter.

Symmetry Energy and Neutron Skin of Nuclei

- Nuclear force leads to constant density in the interior (saturation)
- In heavy nuclei N > Z because the symmetry energy is balanced by the Coulomb repulsion between protons
- Extra neutrons concentrate on the surface

 Neutron skin thickness depends on the parameters of the symmetry energy

Symmetry Energy

$$\mathcal{E}(\rho,\alpha) = \mathcal{E}_{\text{SNM}}(\rho) + \alpha^2 \mathcal{S}_2(\rho) + \dots$$
$$= \left(\varepsilon_0 + \frac{1}{2}K_0 x^2 + \dots\right) + \alpha^2 \left(J + L x + \frac{1}{2}K_0 x^2 + \dots\right) + \dots$$
$$P_{\text{PNM}}(\rho_0) = \frac{1}{3}\rho_0 L \qquad \left[\alpha = (N - Z)/A; \quad x = (\rho - \rho_0)/3\rho_0\right]$$

- Symmetry energy determined by J and L
- L describes density dependence (stiff or soft EoS)

Polarizability, Neutron Skin and Symmetry Energy

Static nuclear dipole polarizability

$$\alpha_D = \frac{\hbar c}{2\pi^2} \int \frac{\sigma_{abs}^{E1}}{E^2} dE$$

TECHNISCHE UNIVERSITÄT

DARMSTADT

Experimental Approach

- Proton scattering at a few hundred MeV and angles close to 0°
 - Experiments possible at RCNP and iThemba LABS
 - Review: PvNC and A. Tamii, EPJA 55, 110 (2019)

- Polarizabilty studies
 - ²⁰⁸Pb: A. Tamii et al., PRL 107, 062502 (2011)
 - ¹²⁰Sn: T. Hashimoto et al., PRC 92, 031305(R) (2015)
 - ^{112,114,116,118,120,124}Sn: S. Basssauer et al., PLB 810, 135804 (2020)
 - ⁴⁸Ca: J. Birkhan et al., PRL 118, 252501 (2017)

RCNP Osaka Facility

0° Setup at RCNP

Multipole Decomposition of Angular Distributions

Excitation Energy (MeV)

8

9

0 5

6

Comparison of Both Methods

Excitation Energy (MeV)

⁴⁰Ca: Data

⁴⁰Ca: Multipole Decomposition Analysis

R.W. Fearick et al, in preparation

 Constraints on continuum cross sections from phenomenological parameterization of QFS (C. Kalbach) and assuming a Fermi function

Photoabsorption Cross Sections ⁴⁰Ca UNIVERSITÄT DARMSTADT R.W. Fearick et al, in preparation 100 (a) σ_{abs} (mb) ⁴⁰Ca(p,p') $E_{\rm p} = 295 \,\,{\rm MeV}$ 50 0.4° 0 Cumulative α_D (fm³) 2 $\alpha_D = 1.86(14) \text{ fm}^3$ (b) 1 our data from Ahrens 1985 (scaled) from Ahrens 1975 (scaled) 0 20 30 40 50 60 10 Excitation energy (MeV)

TECHNISCHE

Theoretical Approach: ab initio

S. Bacca et al., Phys. Rev. Lett. 111, 122502 (2013)

- Based on interactions derived from χEFT
- Combines Lorentz Integral Transform (LIT) with Coupled Cluster (CC) technique
- Method applicable to magic nuclei only

Theoretical Approach: ab initio

C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)

- Same interactions can be used to calculate nuclear matter
- Polarizability provides constraints for neutron matter

Polarizability ⁴⁰Ca: *Ab Initio* Calculations

- Improved calculations with triple correlations in the ground state M. Miorelli et al., PRC 98, 014324 (2018)
- Consistent description of ⁴⁰Ca and ⁴⁸Ca
- Constraints on symmetry energy: J = 28 32 MeV L = 41 49 MeV

PREX-II Constraints on Neutron Skin and Density Dependence of the Symmetry Energy

6.1 50 100 150 200 250 ²⁰⁸Pb 1400.5 $\chi EFT(2020)$ $=(2/3)\rho_{c}$ χEFT (2013) 1200.4 **g**] ^dB-^uB weak radius R_w [fm] 5.9 Ab-initio(CC) TAMUc TAMUb 100 $L(\rho)[MeV]$ Skins(Sn) TAMUa QMC FSUgold neutron skin $\alpha_{\rm D}(\rm RPA)$ 0.2 5.7 Big Apple 0.1 5.6 charge radius R 5.5 0 (106±37)MeV PREX-2 (a) (b) 5.4 150 50 100 200 250 0.150.20.30.35 0 520 540 560 580 600 620 R_{skin}(fm) L(MeV) PV asymmetry A_{pv} [ppb]

• Derived density dependence of the symmetry energy L = 106(37) MeV

D. Adhikari et al., PRL 126, 172502 (2021)

B.T. Reed et al., PRL 126, 172503 (2021)

PREX-II versus Polarizability Constraints

P.-G. Reinhard, X. Roca-Maza and W. Nazarewicz, arXiv: 2105.15050

- No consistent description of A_{PV} and $\alpha_D(^{208}Pb)$ possible
- Similar analysis by J. Piekarewicz, PRC 104, 024329 (2021)

Extension to ^{40,48}Ca

- $\alpha_{\rm D}(^{40,48}{\rm Ca})$ can be reproduced when $\alpha_{\rm D}(^{208}{\rm Pb})$ is included in the fit
- Corresponding symmetry energy parameter range $L \approx 30 70 \text{ MeV}$

- Proton scattering at 0° a versatile experimental tool to extract the complete electric dipole response in nuclei and thus the polarizability
- ⁴⁰Ca and correlation with ⁴⁸Ca
 - consistent description with ab initio theory
 - consistent description with EDFs which reproduce the polarizability in ²⁰⁸Pb
- PREX-II and polarizability results in ²⁰⁸Pb cannot be described simultaneously by EDF theory

Collaborators ⁴⁰Ca Project

R.W. Fearick Department of Physics, University Cape Town, South Africa

S. Bassauer, J. Birkhan, N. Pietralla, V.Yu. Ponomarev, A. Richter, A. Schwenk Institut für Kernphysik, Technische Universität Darmstadt, Germany

> P.-G. Reinhard Institut für Theoretische Physik, Universität Erlangen, Germany

S. Bacca J. Simonis Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany

W. Nazarewicz FRIB and Department of Physics and Astronomy, Michigan State University, USA

> X. Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano, Italy

> > H. Matsubara, A. Tamii RCNP, Osaka University, Japan

Multipole Decomposition Analysis

Transition amplitudes and singleparticle wave functions from QPM

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta, E_x)_{exp} = \sum_{I\pi} a^{J^{\pi}} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta, E_x, J^{\pi})_{DWBA}$

E3 transition as a substitute for possible higher multipole contributions

Phenomenological background (quasifree scattering)

ISGQR and ISGMR contributions subtracted prior to MDA

Total Spin Transfer

Polarizability ⁴⁰Ca: *ab initio* vs. EDFs

EDFs selected to decribe polarizability of ⁶⁸Ni, ¹²⁰Sn and ²⁰⁸Pb X. Roca-Maza et al., PRC 92, 064304 (2015)

Symmetry Energy Constraints

F. Gulminelli and A.F. Fantina, arXiv:2110.02616

