#### Electric Dipole Moment Measurements at Storage Rings

#### **J. Pretz** RWTH Aachen & FZ Jülich on behalf of the JEDI & CPEDM collaboration





Spin 2021, October 2021

# Outline

#### Motivation

EDMs and their relation to CP violation and Matter- Antimatter - asymmetry in the universe

#### • Experimental Method

Spin Motion in Storage Rings

#### Experimental Results & Plans

with focus on activities at Cooler Synchrotron COSY, Germany and EDM prototype ring

# **Motivation**

# Electric Dipole Moments (EDM)



- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal \$\mathcal{T}\$ \$\begin{smallmatrix} \mathcal{P} \mathcal{T}\$ and parity \$\mathcal{P}\$ symmetry
- close connection to matter-antimatter asymmetry
- axion field leads to oscillating EDM

talks on EDM theory:



# **Proton EDM**

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update





### EDM: Current Upper Limits



storage rings: EDMs of **charged** hadrons:  $p, d, {}^{3}$ He, goal:  $10^{-29}e$  cm precision

#### more non-storage ring EDM talks:





# **Experimental Method**

#### Experimental Method: Generic Idea



build-up of vertical polarization  $s_{\perp} \propto d$ , if  $\vec{s}_{horz} || \vec{p}$  (frozen spin)

#### Experimental Method: Generic Idea



build-up of vertical polarization  $s_{\perp} \propto d$ , if  $\vec{s}_{horz} || \vec{p}$  (frozen spin)

#### Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[ G\vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$= \vec{\Omega}_{MDM} = \vec{\Omega}_{EDM}$$
electric dipole moment (EDM):  $\vec{d} = \eta \frac{q\hbar}{2mc} \vec{s}$ ,
magnetic dipole moment (MDM):  $\vec{\mu} = 2(G+1) \frac{q\hbar}{2m} \vec{s}$ 

Note:  $\eta = 2 \cdot 10^{-15}$  for  $d = 10^{-29} e$ cm,  $G \approx 1.79$  for protons

# Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[ G\vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
  
$$\vec{\Omega}_{\text{MDM}} = 0, \quad \text{frozen spin} \qquad = \vec{\Omega}_{\text{EDM}}$$
  
frozen spin achievable with pure electric field if  $G = \frac{1}{\gamma^2 - 1}$ ,  
works only for  $G > 0$ , e.g. proton

or with special combination of *E*, *B* fields and  $\gamma$ , i.e. momentum

# Momentum and ring radius for proton in frozen spin condition



Two options:

• Pure electric ring: p = 707MeV, bending radius $\approx 50$  m at E=8 MV/m

★ combined prototype ring: p = 300 MeV, bending radius $\approx$  9 m at E=7 MV/m

# **Different Options**

|                        | $\bigcirc$                      | $\odot$                                       |
|------------------------|---------------------------------|-----------------------------------------------|
| 3.) pure electric ring | no $\vec{B}$ field needed,      | works only for particles                      |
|                        | ර, ඊ beams simultaneously       | with <i>G</i> > 0 (e.g. <i>e</i> , <i>p</i> ) |
| 2.) combined ring      | works for $e, p, d, {}^{3}He$ , | both $\vec{E}$ and $\vec{B}$                  |
|                        | smaller ring radius             | B field reversal for ♂, ⊘                     |
|                        |                                 | required                                      |
| 1.) pure magnetic ring | existing (upgraded) COSY        | lower sensitivity,                            |
|                        | ring can be used,               | precession due to G,                          |
|                        | running now                     | i.e. no <b>frozen spin</b>                    |

## Staged approach

precursor experiment at Cooler Synchrotron COSY



magnetic storage ring

now



prototype ring

- initially electrostatic storage ring
- simultaneous >> and >> beams

dedicated storage ring



 magic momentum (701 MeV/c) 10 years



# **Precursor Experiment**



# **Results & Plans**

# Observation of polarization build-up



- radio-frequency Wien filter (WF) provides partially frozen spin
- polarization build-up proportional to EDM ... and many perturbations
- perturbations are under investigation



# Precursor Experiment at COSY

Tools developed to manipulate and measure beam polarization:

- reaching > 1000 s spin coherence time
- measure 120 kHz spin tune precession in horizontal plane to 10<sup>-10</sup> in 100 s
- development of polarization feed back system
- $\bullet \ \Rightarrow \ Single \ bunch \ spin \ manipulation$



#### Principle of storage ring axion experiment



- Axion field gives rise to an effective time-dependent θ-QCD term
- This gives rise to an oscillating electric dipole moment EDM *d*.

$$d = d_{DC} + d_{AC} \sin(\omega_a t + \varphi_a)$$
  
 $\omega_a = rac{m_a c^2}{\hbar}$ 

#### **First Results**



- Momentum scan  $\rightarrow \Omega_{MDM}$ scan  $\rightarrow$  axion mass scan
- mass range covered: 4.96 - 5.02 · 10<sup>-9</sup> eV
- axion would show up as jump in vertical polarisation
- allows to search at a given mass

#### Prototype Ring: Lattice & Bending Element



- operate electrostatic ring
- store  $10^9 10^{10}$  particles for 1000 s
- simultaneous () and () beams
- frozen spin (only possible with additional magnetic bending)
- develop and benchmark simulation tools
- develop key technologies: beam cooling, deflector, beam position monitors, shielding ...
- perform EDM measurement



# Prototype Ring: Lattice & Bending Element





CPEDM collaboration, CPEDM CERN Yellow report https://doi.org/10.23731/CYRM-2021-003;

# (Almost pure) Electric storage ring



- Electric bends
- Uses magnetic focusing

   → reduction of systematic error
   due to radial magnetic field
- bending radius = 95 m

US based storage ring EDM collaboration arXiv:2007.10332v2

#### Electron & muon EDM

- Electron EDM @ Jefferson Lab smaller ring size (few meters) using spin transparent mode R. Suleiman, EDM in Small Rings, 21 Oct 2021, 08:10 see also:
- Yury Filatov, Spin Transparency Method for High Precision Experiments with Polarized Beams, 19/10/2021, 20:30
- muon EDM @ PSI

dedicated experiment to measure muon EDM Mikio Sakurai: Towards a search for the muon electric dipole moment at PSI using the frozen-spin technique, 19/10/2021, 21:00

#### @ muon EDM @ JPARC

Yusuke Takeuchi, Muon g-2/EDM Experiment at J-PARC, 20/10/2021, 11:45

- muon EDM @ FNAL muon EDM measurement parallel to muon g 2 measurement
  - V. Tishchenko, Measurement of muon g 2, 18 Oct 2021, 15:30

# Other talks related to storage ring EDM I

#### Experiments at COSY

- Max Vitz Orbit Response Matrix Analysis for COSY Model Optimization using LOCO, 18/10/2021, 21:20
- Artem Saleev Spin tune response to vertical orbit correction at COSY
- Tim Wagner Beam-based alignment at the Cooler Synchrotron (COSY), 19/10/2021, 21:20
- Vera Shmakova The search for electric dipole moments of charged particles using storage rings, 19/10/2021, 20:30
- Jamal Slim Towards a surrogate computational tool to quantify the systematic uncertainties in EDM experiments in storage rings, 19/10/2021, 21:20

#### Prototype Ring

- Otari Javakhishvili Pellet target development for storage ring EDM polarimetry 19/10/2021, 21:00
- Saad Siddique Simulations of Beam Dynamics and Beam Lifetime for the Prototype EDM Ring 18/10/2021, 21:00
- Rahul Shankar Optimisation of spin-coherence time in a prototype storage ring for electric dipole moment measurements

# Summary

- EDMs are unique probe to search for new CP-violating interactions and contribute to axion searches
- charged particle EDMs can be measured in storage rings
- Several projects are ongoing on to search for  $e^-$ ,  $\mu$ , p, d EDM



# **Extra Slides**

#### Axion Searches at storage rings





# Momentum and ring radius for **proton** in frozen spin condition



#### Momentum and ring radius for **deuteron** in frozen spin condition



## Momentum and ring radius for electron in frozen spin condition

