Experimental studies on the high-energy spin physics in collider experiments at RHIC

Salvatore Fazio

Supported by:

(Calabria University & INFN Cosenza)

The 24th International Spin Symposium SPIN 2021 Matsue, Shimane Prefecture, Japan, October 18 – 22, 2021

UNIVERSITÀ DELLA CALABRIA

The Relativistic Heavy-Ion Collider

RHIC is the world's first and only polarized hadron collider

The RHIC experiments

PHENIX

- Central detector (EMCal and drift/pad chambers), two central arms covering
 - $|\Delta \Phi| = \pi/2 \times 2$
 - |η| < 0.35
- Two muon arms
 - 1.2 < |η| < 2.4

STAR

- 2π coverage Electromagnetic Calorimeter
 - Barrel: -1 < η < 1
 - End-cap: 1.1 < η < 2
- Main tracker Time Projection Chamber (TPC):
 - |η| < 1.3

The Cold QCD program

Probing the cold nuclear matter via strong interactions in p+p and p+A collisions

- What is the origin of the proton spin?
- What is the landscape of the (un)polarized see quarks in a nucleon?
- Understand QCD processes in cold nuclear matter
 - Investigate transverse-spin effects in QCD
- What is the initial state in nuclear collisions?

arXiv:1602.03922

Proton helicity structure

Helicity of gluons

Process: $\vec{p} + \vec{p} \rightarrow \text{jets,dijets} + X$

- RHIC energies are sensitive to qg, gg interactions \rightarrow access to $\frac{\Delta g(x)}{g(x)}$
- First evidence for gluon polarization driven by STAR inclusive jet measurements at $\sqrt{s} = 200 \text{ GeV}$ (2009 run data) – [PRL 115 (2015) 9, 092002]

→ global fits:
$$\int_{0.05}^{1.0} dx \Delta g \sim 0.2 \pm_{0.07}^{0.06} @Q^2 = 10 \text{ GeV}^2$$

Inclusive jets from run 2015 at 200 GeV

 $\vec{p} + \vec{p} \rightarrow \text{jets} + X$

- Newly published 2015 data consistent with results from 2009
- Twice larger figure-of-merit (LP⁴) and improved systematics
- When included into global fits, will further reduce uncertainty on $\frac{\Delta g(x)}{g(x)}$, x > 0.05

Dijets from run 2015 at 200 GeV

 $\vec{p} + \vec{p} \rightarrow \text{jet} + \text{jet} + X$

- Dijets give more stringent constraints to underlying partonic kinematics
 - Better constraints on functional form of $\Delta g(x)$ narrow ranges of initial state partonic momentum probed
- Will further improve precision of $\Delta g(x)$ at x > 0.05
- STAR forward endcap: extends coverage down to $x \gtrsim 0.01$

Inclusive jets and dijets from run 2012 at 510 GeV

- Higher c.o.m. energy \rightarrow smaller x [$x \gtrsim 0.004$ with STAR endcap dijets]
- \circ Results from 510 GeV compatible with 200 GeV at the same x_T
- Analysis of run 2013 will add f.c.t. ~3.5 more statistics with respect to run 2012
 S. Fazio

Central pion and direct photon production at 510 GeV

- \circ Pion A_{LL} sensitive to the gluon polarization sign
- Direct photon sensitive to gq $\rightarrow \gamma$ q LO process: clean access to $\Delta g(x)$ (no hadronization)
- Consistent with STAR jets results in central production 20 OCT 2021
 S. Fazio

Helicity of sea quarks

Observable:
$$A_L = \frac{\sigma}{\sigma^2 + \sigma^2}$$

At LO:
 $A_L^{W^+}(y_W) \sim \frac{\Delta \bar{d}(x_1)u(x_2) - \Delta u(x_1)\bar{d}(x_2)}{\bar{d}(x_1)u(x_2) + u(x_1)\bar{d}(x_2)}$

$$A_{L}^{W^{-}}(y_{W}) \sim \frac{\Delta \bar{u}(x_{1})d(x_{2}) - \Delta d(x_{1})\bar{u}(x_{2})}{\bar{u}(x_{1})d(x_{2}) + d(x_{1})\bar{u}(x_{2})}$$

• A_L of W^{\pm} bosons \rightarrow decompose quark flavors

 $\sigma^{\rightarrow} - \sigma^{\leftarrow}$

- Decay process is easily calculable: no fragmentation fcn.
- flavor asymmetry of the light quark sea in the proton

unpolarized: ubar ≠ dbar
polarized case?

A_L in W[±] production

S. Fazio

- First muon decay channel for $W^{\pm} A_{L}$
- Theoretical curves use the polarized NLO generator CHE
- Backward μ^{-} are at upper limit of uncertainty bands. Hints that $\Delta \overline{u}$ might be larger than fits without RHIC data indicate
- Forward μ^{-} is below DSSV08
- Backward μ^+ show smaller than predicted asymmetries

A_{L} in W^{\pm} production

NNPDFpol1.1 reweighting

20 OCT 2021

13

Quark flavor ratio in PDFs

- Unpolarized \bar{d}/\bar{u} in PDFs can be probed via Drell-Yan
- **E-866** suggests a trend where the $\overline{d}/\overline{u}$ ratio appears to be decreasing at large-*x*, but **new SeaQuest** trend appears to level out at **higher** *x*.
- Unpolarized W cross-section charge ratios are also sensitive to quark/anti-quark distributions.

LO:

$$\frac{\sigma(W^{+})}{\sigma(W^{-})} = \frac{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}{\overline{u}(x_1)d(x_2) + d(x_1)\overline{u}(x_2)}$$

SeaQuest/E906

Systematic uncertainty

Nature 590, 561–565 (2021)

- Complementary to Drell-Yan data: $|\eta| < 1$: 0.1 < x < 0.3, at higher $Q^2 = M_W^2$
- LHC coverage: ~10⁻³ < x < 10⁻¹

 $\left\langle x_{1,2} \right\rangle = \frac{M_W}{\sqrt{s}} e^{-\eta_l/2}$

STAR coverage:

- > Mid-rapidity $-1 < \eta < 1$ (TPC +BEMC) : 0.1 < x < 0.3
- > Forward EEMC $1.1 < \eta < 2: 0.06 < x < 0.4$
- Differential cross sections of weak bosons are key inputs in global fits of unpolarized TMDs
 20 OCT 2021
 S. Fazio

Unpolarized W⁺/W⁺ differential cross-section ratios

 $\circ~$ Cross section charge ratio measured vs. both the decay lepton and the boson's kinematics $_$

- Will provide insights into unpolarized light quark distributions d(x), u(x), and $\frac{d}{\pi}$ at x > 0.05
- Run-17 will add an additional ~350 pb⁻¹, Run-22 expected to add another ~400 pb⁻¹

Unpolarized $Z^0 p_T$ -differential cross section

- Now includes data from 2017: ~2 more statistics
 compared to previous release
 - Unfolded p_T spectrum
 - Systematics from energy resolution and electron selection
- Key input to global fits of unpolarized TMDs
- /c) O New theory fits including all STAR measurements
 will be added as they become available

Sivers function

- 8 Transverse Momentum Dependent distribution functions (TMDs) are allowed by gauge invariance
- The TMD known as **Sivers function** is
- Sensitive to transverse proton spin parton transverse motion correlations
- Predicted not to be universal between SIDIS & p+p
 - Sivers_{DIS} = Sivers (DY or W or Z)
- Weak bosons:
 - less background compared to DY
 - higher $Q^2 = M_W^2$: can test evolution effects
 - sensitive to sea quarks
 - but: need for reconstructing produced boson's kinematics •

Tools to measure Sivers:

Transverse single-spin asymmetry amplitude (azimuthal modulation)

P Sivers fct.

A_N in weak boson production

- Statistics much improved with run 2017 (350pb⁻¹) compared to run 2011 (25pb⁻¹)
- $\,\circ\,$ Predictions assume sign change
 - Extraction includes SIDIS, DY and STAR run 2011 results
- o Current STAR data not yet significant enough to make claims on the sign-change
 - Expect ~400 pb⁻¹ more data from run 2022, with η coverage extended by STAR iTPC

Asymmetry in dijets opening angle

Sivers fnc. is sensitive to correlation between transverse **proton spin** (initial state) and **parton transverse momentum**

 $\left\langle \vec{S}_{proton} \cdot \left(\vec{p}_{proton} \times \vec{k}_T \right) \right\rangle \neq 0$

- \circ Non-zero k_{τ} leads to a spin-dependent tilt of dijet opening angle in transverse plane
- Enhancing contribution of *u* or *d* quarks by sorting jets by their net charge
- \circ Tilt unfolded for the k_T of individual partons
- **Results:** k_T for *d* quark opposite in sign, and twice larger than the average k_T for u quarks
- Constraints for the Sivers fnc. at a high Q^2 scale $(Q^2 > 160 \text{ GeV}^2)$

A_N in direct photons and heavy flavor production

- \circ PHENIX detector can measure D⁰ mesons and direct γ at mid rapidity ($|\eta|$ <0.35)
- Sivers indirectly constrained via integral relationship with the Twist-3 trigluon correlator

∆**⊤q(x)** h₁q(x)

Transversity

Describes the net density of **quarks with spin aligned with the transversely polarized nucleon** (leading twist)

- Tools: azimuthal modulation of transverse single-spin asymmetry amplitude (A_{UT})
- At RHIC: sensitivity via two A_{UT} amplitudes:
 - Spin-dependent modulation of hadrons in jets
 - Collins function (TMD FF) Correlation of transverse spin of fragmenting quark and transverse momentum kick given to fragmentation hadron
 - **o** Di-hadron correlation measurements
 - "interference FF" (collinear framework) Correlation of transverse spin of fragmenting quark and momentum cross-product of di-hadron pair

Parton spin

Nucleon spin

Transversity

S. Fazio

Spin-dependent modulation of hadrons in jets Collins function (TMD FF)

Di-hadron correlation measurements "interference FF"

- Significant Collins asymmetries have been observed from 200 GeV data:
 - Collinear transversity is probed most directly in the jet p_{τ} dependence;
 - Collins TMD FF is sensitive to the (j_{τ}, z) dependence.

24

Forward transverse single spin asymmetries

STAR - Phys. Rev. D 103 (2021) 92009

• Investigating the origin of the large asymmetries

• Results:

- Observed A_N for EM-jets and Collins asymmetry for π^0 within EM jets are small
- A_N for non-isloated π^0 and for π^0 within higher-multiplicity jets are even smaller
- Weak dependence of the collision energy 20 OCT 2021

GUON SATURATION

Nuclear dependence of forward transverse asymmetries

- The nuclear modification of transverse spin asymmetry is related to parton saturation in the color glass condensate
- New opportunities to use p+A collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions

• PHENIX charged hadron coverage:

- $1.4 < \eta < 2.4$
- $0.1 < x_F < 0.2$
- $1.8 < p_T < 7 \text{ GeV}$
- ightarrow Strong A dependence observed

• STAR π^0 coverage:

- $2.6 < \eta < 4.0$
- $0.2 < x_F < 0.7$
- $1.5 < p_T < 7 \text{ GeV}$
- → Mild A dependence observed in a regime where perturbative effects are relevant

Di-hadron correlations

□ Measure the azimuthal correlation between two final hadrons in p+p and p+A

- **p+p:** $2 \rightarrow 2$ process \Rightarrow back-to-back di-hadron
- **p+A:** back-to-back configuration is smeared by multiple gluon interactions

□ Access to non-linear gluon dynamics at small *x* (e.g. gluon saturation)

• Remember: saturation scale grows with A and decreases with x

Results

• Clear signature of non-linear gluon dynamics with di-hadron correlation

- Evidence for a nuclear **dependence:** stronger suppression in p+Au than p+Al
- Event activity dependence: suppression enhanced in "high activity" collisions at low p_T

STAR forward upgrade

Run 2022: p^+p^+ collisions at 510 GeV with forward upgrade and enhanced PID at mid-rapidity

Enhanced capabilities:

Forward rapidity $2.5 < \eta < 4$

TMD measurements at high x

- Sivers through tagged Drell-Yan, jets, direct photon
- Transversity at high x + Collins/IFF

Mid rapidity $-1.5 < \eta < 1.5$

Improved statistical precision and the extended η acceptance of iTPC

- Sivers measurements with *W/Z* and dijets
- Transversity + Collins/IFF
- Unpolarized *W/Z* cross section
- Forward jet capability and charge-sign discrimination of charged particles
 - Tracking: Si disks + small Thin Gap Chambers
 - **Calorimetry:** hadronic and electromagnetic
- Access to highly asymmetric partonic collisions: high-*x* quark and low-*x* gluon interactions 20 OCT 2021 S. Fazio

Si TGC

sPHENIX

Cold QCD goals with sPHENIX

- Use the strengths of sPHENIX barrel to measure jet, heavy flavor and direct photon, in order to probe:
 - Sivers and Collins effects
 - Nuclear PDFs and FF in midrapidity

- Under constructions (running 2023+)
- Optimized for jets: Hermetic barrel, 1.5 T
 BaBar magnet, HCal
- $\odot\,$ Cold QCD dedicated run requested for 2024
 - Program with $p^{\uparrow}p^{\uparrow}$, $p^{\uparrow}Au$ at 200 GeV
 - run together with STAR

	1					
Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ^{−1}	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

S. Fazio

Conclusions

- RHIC has provided key (often unique) insight into the spin structure of a proton
 - Evidence for the positive gluon polarization for *x* > 0.05
 - The polarized and unpolarized sea quark distributions via W/Z production

Sivers function

- A_N from weak bosons consistent with sign change
- Non-zero Sivers effect observed in dijets
- Thwist-3 gluon dynamics with direct-photons and heavy flavor
- Transversity through the Collins and IFF asymmetry
 - Non-zero asymmetries at mid- η that are sensitive to quark transversity at hard scales
 - nuclear dependence of the asymmetries in different regimes
- Non-linear gluon dynamics via di-hadron correlations
 - Observed suppression in p+A over p+p at small x and grows with A
- **o** sPHENIX experiment and STAR Forward upgrade provide new physics opportunities

Dijets at moderate forward rapidity

Phys. Rev. D98 (2018) 032011

Inclusive jets

 $x \approx x_T e^{\pm \eta}$ $x_T = 2p_T / \sqrt{s}$

• Dijets

$$x_{1} = (p_{T3}e^{\eta_{3}} + p_{T4}e^{\eta_{4}})/\sqrt{s}$$

$$x_{2} = (p_{T3}e^{-\eta_{3}} + p_{T4}e^{-\eta_{4}})/\sqrt{s}$$

$$M = \sqrt{x_{1}x_{2}s}$$

$$|\cos \theta^{*}| = \tanh(|\eta_{3} - \eta_{4}|/2)$$