Progress on fragmentation-function studies

Felix Ringer YITP, Stony Brook University

SPIN 2021, The 24th International Spin Symposium, Japan, 10/21/21

SIMONS FOUNDATION

The QCD fragmentation process

figure R. Cruz Torres

High-energy collider experiments

Large Hadron Collider

Jefferson Lab

Relativistic Heavy Ion Collider

Electron-Ion Collider

BELLE

Collinear fragmentation

Further new developments

Collinear fragmentation

F. Ringer

TMD Fragmentation

Selection of topics

October 21, 2021

Extraction of collinear fragmentation functions

- MAPFFI.0 0.7 $\mathbf{0.5}$ Neural network parametrization 0.3 \boldsymbol{y} $\mathbf{0.2}$ $zD_i^{\pi^+}(z,\mu_0=5\,{
 m GeV})=\left(\mathcal{N}_i(z;oldsymbol{ heta})-\mathcal{N}_i(1;oldsymbol{ heta})
 ight)^2$ 0.15
- Semi-Inclusive DIS & e⁺e⁻ data
- NLO fit + exploration of low-Q² data

 $z D_q^{\pi^+}$

0

Rati

Khalek, Bertone, Nocera 21

Extraction of collinear fragmentation functions

- Simultaneous extraction of PDFs & FFs, JAM20-SIDIS
- SIDIS, e⁺e⁻ data, Drell-Yan, DIS
- Correlation between PDFs and FFs for kaons
- Larger $\overline{s} \to K^+ FF$ compensated for by smaller strange PDF

Moffat, Melnitchouk, Rogers, Sato 21

Dark - higher likelihood

Semi-Inclusive DIS at NNLO

- One of the missing pieces of global analyses at NNLO
- Approximate results at NNLO using threshold resummation at NNLL'
- Including the dominant contribution at subleading power (qq)

N

Abele, de Florian, Vogelsang 21

Mellin space hard function

$$\tilde{\omega}_{qq}^T \left(N, M, \alpha_s(\mu_R), \frac{\mu_R}{Q}, \frac{\mu_F}{Q} \right) = 1 + \frac{\alpha_s(\mu_R)}{\pi} \tilde{\omega}_{qq}^{T,(1)} + \left(\frac{\alpha_s(\mu_R^2)}{\pi} \right)^2 \tilde{\omega}_{qq}^{T,(2)} + \mathcal{O}$$

$$\frac{1}{e_q^2} \tilde{\omega}_{qq}^{T,(2)} \left(N, M, \frac{\mu_R}{Q}, \frac{\mu_F}{Q} \right) = 2C_F^2 \mathcal{L}^4 + 4C_F \mathcal{L}^3 \left(\frac{\pi}{3} b_0 + C_F \ln \frac{\mu_F^2}{Q^2} \right) + C_F \mathcal{L}^2 \left[C_F \left(-8 + \frac{\pi^2}{3} + 2\ln^2 \frac{\mu_F^2}{Q^2} - 3\ln \frac{\mu_F^2}{Q^2} \right) + \left(\frac{67}{18} - \frac{\pi^2}{6} \right) C_A - \frac{5}{9} N_f \right] + C_F \mathcal{L} \left[\left(\frac{101}{27} - \frac{7}{2} \zeta(3) \right) C_A - \frac{14}{27} N_f + C_F \ln \frac{\mu_F^2}{Q^2} \left(-8 + \frac{\pi^2}{3} - 3\ln \frac{\mu_F^2}{Q^2} \right) \right] + C_F \mathcal{L} \left[\left(\frac{101}{27} - \frac{7}{2} \zeta(3) \right) C_A - \frac{14}{27} N_f + C_F \ln \frac{\mu_F^2}{Q^2} \right] \right]$$

with
$$\mathcal{L} \equiv \frac{1}{2} \left(\ln(\bar{N}) + \ln(\bar{M}) \right)$$

 N, M conjugate to x, z

$\mathcal{O}(\alpha_s^3)$

Semi-Inclusive DIS at NNLO

Size of NNLO corrections

Abele, de Florian, Vogelsang `21

• QCD scale uncertainty

• LHCb data for Z+jet events, charged hadrons LHCb, PRL 123 (2019) 232001

 Different quark/gluon fractions compared to inclusive jets

In-jet fragmentation

Comparison to theory calculations in SCET

 $\mathbf{z}_{\mathbf{h}}$

Kang, Lee, Terry, Xing `19

In-jet fragmentation at threshold

- Double logarithmic threshold corrections for $z_h \to 1$
- Resummation at NLL' within SCET for inclusive jets

see also Procura, Waalewijn `12

Kaufmann, Liu, Mukherjee, FR, Vogelsang 21

Collinear fragmentation

Further new developments

F. Ringer

TMD Fragmentation

TMD Fragmentation

October 21, 2021

Extractions of TMD FFs

- SIDIS, Drell-Yan 1039 data points
- TMD PDF, TMD FF, Rapidity anomalous dimension
- Test of universality $q_T \lesssim 0.25Q$
- N³LO evolution, NNLO matching

SIDIS multiplicities, HERMES

Scimemi, Vladimirov `19

see also Bacchetta, Delcarro, Pisano, Radici, Signori `18 Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato 20

- Measure hadrons inside a jet relative the jet axis
- Azimuthal transverse spin asymmetries
- Independent handle on transversity and the Collins TMD FF $H_1^{\perp q}(z_h, \vec{j}_T)$
- Leading power in the jet radius avoids sensitivity to TMD PDF

see also LHCb, PRL 123 (2019) 232001

In-jet TMD fragmentation

Liu, Ringer, Vogelsang, Yuan `18 Kang, Prokudin, Ringer, Yuan `17 Arratia, Kang, Prokudin, Ringer `20

Unpolarized

Polarized

- Generalize to full initial & final state spin dependence
- E.g. Lambda production in the jet
- Correlation of $S_{\Lambda\perp}$ and j_{\perp}
- Asymmetry

In-jet TMD fragmentation

Kang, Lee, Shao, Fanyi `21

Jet grooming & TMD fragmentation

- Measure hadrons with respect to the groomed jet axis
- Grooming parameter gives additional handle on TMD evolution

Makris, Neill, Vaidya `18

Soft drop grooming

Remove branches in the jet with $z < z_{cut}$

Dasgupta, Fregoso, Salam `13 Larkoski, Marzani, Soyez, Thaler `14

Jet grooming & TMD fragmentation

- Measure opening angle between different jet axes (IRC safe)
- Recent results from the ALICE Collaboration

Cal, Neill, FR, Waalewijn `19

ALICE, preliminary, see Rey Cruz Torres PANIC2021

Collinear fragmentation

Further new developments

F. Ringer

Further new developments

TMD Fragmentation

October 21, 2021

Thrust-TMD measurements at **BELLE**

• Thrust

• Triple differential measurement

 $z_h = 2E_h/Q, \quad p_{hT} \equiv |\boldsymbol{p}_h|, T$

BELLE Collaboration, PRD 99 (2019) 112006

Thrust-TMD measurements at **BELLE**

• Triple differential measurement

 $z_h = 2E_h/Q, \quad p_{hT} \equiv |\mathbf{p}_h|, \quad T = 1 - \tau$

- Requires joint resummation of multiple large logarithms
- Identification of 3 kinematic regions with different factorizations $q_T = p_{hT}/z_h$

Region 1: $\sqrt{\tau} \gg q_T/Q \sim \tau$ Region 2: $\sqrt{\tau} \gg q_T/Q \gg \tau$ Region 3: $\sqrt{\tau} \sim q_T/Q \gg \tau$

• Regions 1,2 are sensitive to TMD physics

Makris, FR, Waalewijn 20

Resummation at NNLL in SCET, e.g. region 1

 $\frac{\mathrm{d}\sigma_1}{\mathrm{d}z_h\,\mathrm{d}\boldsymbol{q}\,\mathrm{d}\tau} = \sum_j \sigma_{0,j}(Q) \int_{-\infty}^{\infty} \frac{\mathrm{d}\boldsymbol{b}}{(2\pi)^2} \int_{\gamma-\mathrm{i}\infty}^{\gamma+\mathrm{i}\infty} \frac{\mathrm{d}\boldsymbol{u}}{2\pi\mathrm{i}} \, e^{\mathrm{i}\boldsymbol{b}\cdot\boldsymbol{q}+\boldsymbol{u}\tau} H(Q,\mu)$ $J\left(\frac{u}{Q^2},\mu\right)S\left(\boldsymbol{b},\frac{u}{Q},\mu,\nu\right)D_{1,j\to h}\left(z_h,\boldsymbol{b},\mu,\frac{\nu}{Q}\right)$

> see also Boglione, Simonelli `20-`21 Lustermans, Michel, Tackmann, Waalewijn `19

Thrust-TMD measurements at **BELLE**

- Integrate out the thrust dependence
- Double differential measurement

 $z_h = 2E_h/Q, \quad p_{hT} \equiv |\boldsymbol{p}_h|$

- Joint TMD & threshold resummation
- Introduces non-global logarithms

Kang, Shao, Zhao `20

Further new developments

October 21, 2021

Hadrons from jet physics

• Can we calculate hadrons as jets with zero radius?

$$d\sigma \sim H_i \otimes J_i \sim H_i \otimes e^{-P_{ji}} \otimes J_j$$

DGLAP evolution factor

- Requires resummation of small-z logarithms
- •Angular ordered DGLAP

Neill, Ringer `20

$$\begin{aligned} R^{2} \frac{\partial}{\partial R^{2}} x^{1+2\epsilon} d_{a} \left(x, R, \frac{\mu^{2}}{Q^{2}} \right) &= \sum_{b} \rho_{ab} \left(\frac{\mu^{2}}{R^{2} Q^{2}} \right) x^{1+2\epsilon} d_{b} \left(x, R, \frac{\mu^{2}}{Q^{2}} \right) \\ &+ \sum_{b} \int_{x}^{1} \frac{dz}{z} P_{ab} \left(\frac{x}{z}; \frac{\mu^{2}}{z^{2} R^{2} Q^{2}} \right) z^{1+2\epsilon} d_{b} \left(z, R, \frac{\mu^{2}}{Q^{2}} \right) \end{aligned}$$

Hadrons from jet physics

• Can we calculate hadrons as jets with zero radius?

 Does not require the fit of a collinear fragmentation function only the cutoff scale & the normalization are fitted!

Collinear fragmentation

Further new developments

TMD Fragmentation

September 23 2021

Conclusions

- New multi-differential data sets
- Higher order QCD corrections
- New observables probing fragmentation
- Energy-energy correlators, leading hadrons, ...
- New approach to hadron fragmentation from jet physics

