

24th International Spin Symposium October 18 -22, 2021

Nuclear Spin-Isospin Responses Studied by Nuclear Reactions: A tribute to Munetake Ichimura

Tomotsugu Wakasa Department of Physics Kyushu University

1938 - 2020

Dedicated to Ichimura-san

with deep gratitude

Ichimura-san and the spin-isospin problems

Ichimura-san made a significant contribution to nuclear physics, especially:

Solve the spin-isospin problems such as

- Quenching of Gamow-Teller strength
- *Enhancement* of spin-longitudinal π -mode

Give a unified understanding of spin-isospin responses in wide (q, ω) region

	Available online at www.sciencedirect.com SCIENCE DIRECT ELSEVIER Progress in Particle and Nuclear Physics 56 (2006) 446–531	Progress in Particle and Nuclear Physics www.elsevier.com/locate/ppnp		
Review				
Spin–isospin responses via (p, n) and (n, p) reactions				
	M. Ichimura ^{a,*} , H. Sakai ^b , T. Wakasa ^c			
	^a Faculty of Computer and Information Sciences, Hosei University, Koganei, Tokyo 184-8584, Japan ^b Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan ^c Department of Physics, Kyushu University, Higashi, Fukuoka 812-8581, Japan			
	GT and pionic spin-longitudinal response			
	Recent progress for unstable nuclei			

GT Response Function R_{GT}(ω)

Gamow-Teller (GT) transition operator

• Nucleon (N) space

$$O_{\rm GT} = t\boldsymbol{\sigma} = \frac{1}{2}\boldsymbol{\tau}\boldsymbol{\sigma}$$

Extend to N+
$$\Delta$$
 space

$$O_{\text{GT}}^{\pm} = \mp \frac{1}{\sqrt{2}} \sum_{k=1}^{A} \left\{ \tau_{k,\pm 1} \boldsymbol{\sigma}_{k} + \frac{g_{A}^{N\Delta}}{g_{A}} (T_{k,\pm 1} S_{k} - T_{k,\mp 1}^{\dagger} S_{k}^{\dagger}) \right\}$$

GT response function

isospin operator from N to
$$\Delta$$

*q=q'=0 and $\omega \sim 0$ for GT transition

Pionic (Spin-Longitudinal) Response Function

Isovector spin-longitudinal transition operator

$$O_L^{\lambda}(\boldsymbol{q}) = \sum_{k=1}^A \left\{ \tau_{k,\lambda} \boldsymbol{\sigma}_k \cdot \hat{\boldsymbol{q}} + \frac{f_{\pi N \Delta}}{f_{\pi N N}} \left(T_{k,\lambda} \boldsymbol{S}_k \cdot \hat{\boldsymbol{q}} + (-1)^{\lambda} T_{k,-\lambda}^{\dagger} \boldsymbol{S}_k^{\dagger} \cdot \hat{\boldsymbol{q}} \right) \right\} e^{i \boldsymbol{q} \cdot \boldsymbol{r}_k}$$

Isovector spin-longitudinal response function

$$R_L^{\lambda}(q,\omega) = \sum_n \left| \langle \Psi_n | O_L^{\lambda}(\boldsymbol{q}) | \Psi_0 \rangle \right|^2 \delta(\omega - (\mathcal{E}_n - \mathcal{E}_0))$$

- Representing πNN and $\pi N\Delta$ coupling

 $\approx q \sim q' \sim 1.7 \text{ fm}^{-1}$ and $\omega \sim q^2/2m_N$ for quasi-elastic scattering

Contrastive Phenomena

Why Ichimura-san and we are especially interested in R_{GT} and R_{L} ?

- They show very contrastive phenomena
- Quenching of RGT

 $au\sigma$: $q\simeq 0,~\omega < 50\,{
m MeV}$

• GT resonance (GTR) region

Enhancement of RL

$$au \sigma \cdot \hat{q} \quad : \ q \simeq q_c \simeq 1.7 \, {
m fm}^{-1}, \quad \omega \simeq rac{q^2}{2m_N}$$

Quasi-elastic scattering (QES) region

Quenching of GT Transition I

C. Gaarde, Nucl. Phys. A 369, 258 (1981).

R.R.Doering et al., Phys. Rev. lett. 35, 1691 (1975).

Quenching of GT Transition II

Extraction of R_{GT} (B(GT)) from (p,n) and (n,p) reactions

$$rac{d^2\sigma_{\Delta L=0}(q,\omega)}{d\Omega d\omega} = \hat{\sigma}_{
m GT}F(q,\omega)R_{
m GT}^{\pm}(\omega)$$

GT total strength

$$S^{\pm}_{
m GT}(\omega^{\pm}_{
m top}) = \int^{\omega^{\pm}_{
m top}} R^{
m exp}_{\pm,
m GT}(\omega) d\omega$$

GT sum rule

$$S_{eta^-} - S_{eta^+} = 3(N-Z)$$

• Model independent in the nucleon space

GT quenching factor

$$Q = rac{S_{ ext{GT}}^-(\omega_{ ext{top}}^-) - S_{ ext{GT}}^+(\omega_{ ext{top}}^+)}{3(N-Z)}$$

• If nucleus is made by nucleons, Q=1.

Origin of Quenching of Total GT Strength

Quark-degree (Δ-isobar) effect

Coupling between p-h and Δ -h is *large (strong repulsion)*

- Significant GT strengths move to Δ region ($\omega{\sim}300$ MeV)
- GTR strength is quenched

Configuration mixing effect

2nd-order config. mixing is effective for all nuclei

- M.Ichimura and K.Yazaki, NP 63, 401 (1965).
- H.A.Mavromatis, L.Zamick, G.E.Brown, NP 80, 545 (1966).
- K.Shimizu, M.Ichimura, A.Arima, NPA 226, 282 (1974).
- I.S.Towner, F.C.Khanna, PRL 42, 51 (1979).
- I.S.Towner, PR 155, 264 (1987).
- A.Arima et al., Adv. NP, 18, 1 (1987).

Coupling between p-h and Δ-h is *small (weak repulsion)*

- Strength-shift to Δ region is small
- GTR strength is quenched by configuration mixing

Dominance of Nuclear Configuration Mixing

Enhancement of Pionic Response

A precursor phenomenon of pion condensation

Pionic (spin-longitudinal) response R_L : **Enhanced** and softened

Rho-mesonic (spin-transverse) response R_T : **Quenched** and hardened

• $R_L/R_T \gg 1 \rightarrow$ Good signature of pion condensation precursor phenomena

Origin of the Enhancement/Quenching

<u>M. Ichimura</u>, H. Sakai, TW, PPNP 56, 446 (2006). Effective p-h and Δ-h interaction governed by OPEP develops pionic correlation.

Experimental Spin-Response Ratio

Pb(p,p') at $T_p=500$ MeV and q=1.75 fm⁻¹

Measure polarization transfer $D_{ij} \rightarrow Separate I$ (cross section) into ID_L and ID_T

Use the proportionality relation between ID_L (ID_T) and R_L (R_T)

• $R_L/R_T \sim 1 \rightarrow No evidence$ of theoretically expected enhancement

Issues raised by Prof. Ichimura

Prof. Ichimura raised the following issues regarding the " R_L/R_T ratio problem"

- Q1 : Is the method used to extract R_L , R_T from D_{ij} reasonable?
 - Relation between the polarized cross sections and D_{ij}
- Q2 : Are theoretical calculations of $R_{\rm L}$ and $R_{\rm T}$ reliable?
 - Fermi gas model calculations
- Q3 : Is the theoretical treatment of the reaction mechanism reasonable?
 - Proportionality between the polarization cross sections and the corresponding response functions

R _L /R _T Puzzle を解くための設問			
Q1. D _{ij} から R _L , R _T を抽出する方法は妥 当か?			
Q2. R _L , R _T の理論計算は信頼できるか?			
Q3. 反応メカニズムの理論的取扱いは妥当か?			

Original slide by Prof. Ichimura in the RCNP workshop (1992).

Q1 : Is the method used to extract RL, RT from Dij reasonable?

M. Ichimura and K.Kawahigashi, Phys. Rev. C 45, 1822 (1992).

Carey's formula

• spin-longitudinal (
$$\pi$$
) : $ID_q = rac{I}{4} \Big[1 - D_{NN} + (D_{SS'} - D_{LL'}) \sec heta_{
m lab} \Big] \propto R_I$

• spin-transverse (p): $ID_p = \frac{I}{4} \Big[1 - D_{NN} - (D_{SS'} - D_{LL'}) \sec \theta_{\text{lab}} \Big] \propto R_T$

This formula is adequate only for NN scattering (NOT for NA scattering)

Ichimura's correct formula

$$\cdot ID_{q} = \frac{I}{4} \Big[1 - D_{NN} + (D_{SS'} - D_{LL'}) \cos(2\theta_{p} - \theta_{\text{lab}} - \Omega) - (D_{LS'} + D_{SL'}) \sin(2\theta_{p} - \theta_{\text{lab}} - \Omega) \Big]$$
$$\cdot ID_{p} = \frac{I}{4} \Big[1 - D_{NN} - (D_{SS'} - D_{LL'}) \cos(2\theta_{p} - \theta_{\text{lab}} - \Omega) + (D_{LS'} + D_{SL'}) \sin(2\theta_{p} - \theta_{\text{lab}} - \Omega) \Big]$$

Q2 : Are theoretical calculations of R_L and R_T reliable?

Q3: Is the theoretical treatment of the reaction mechanism reasonable?

 ω_{lab} (MeV)

Exp. *ID_i* should be compared with DWIA calc.

Unified Analysis

Analyzed

- GTGR spectrum
- GT quenching factor Q
- Spin-longitudinal (pionic) ID_q spectrum

by the common method

Continuum RPA

- Δ isobar is included
- Woods-Saxon type mean field
- Local effective mass
- Spreading widths
- DWIA + Two-step processes
 - Fermi motion
 - Off-shell effect, etc.

PHYSICAL REVIEW C 72, 067303 (2005)

Unified analysis of spin isospin responses of nuclei

T. Wakasa,¹ M. Ichimura,² and H. Sakai³ ¹Department of Physics, Kyushu University, Higashi, Fukuoka 812-8581, Japan ²Faculty of Computer and Information Sciences, Hosei University, Koganei, Tokyo 184-8584, Japan ³Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan (Received 8 October 2004; published 30 December 2005)

PHYSICAL REVIEW C, VOLUME 63, 044609

Distorted wave impulse approximation analysis for spin observables in nucleon quasielastic scattering and enhancement of the spin longitudinal response

Ken Kawahigashi* Department of Information Sciences, Kanagawa University, Hiratsuka 259-1293, Japan

Kimiaki Nishida and Atsushi Itabashi Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan

Munetake Ichimura[†]

Faculty of Computer and Information Sciences, Hosei University, Koganei, Tokyo 184-8584, Japan (Received 27 July 2000; published 23 March 2001)

PHYSICAL REVIEW C 69, 054609 (2004)

Pionic enhancement in quasielastic (\vec{p}, \vec{n}) reactions at 345 MeV

T. Wakasa,^{1,*} H. Sakai,^{2,3} M. Ichimura,⁴ K. Hatanaka,⁵ M. B. Greenfield,⁶ M. Hatano,² J. Kamiya,⁷ H. Kato,² K. Kawahigashi,⁸ Y. Maeda,² Y. Nakaoka,⁻ H. Okamura,⁹ T. Ohnishi,³ H. Otsu,¹⁰ K. Sekiguchi,³ K. Suda,¹¹ A. Tamii,⁵ T. Uesaka,¹² T. Yagita,¹ and K. Yako² ¹Department of Physics, Kyushu University, Higashi, Fukuoka 812-8581, Japan ²Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan ³The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan ⁴Faculty of Computer and Information Sciences, Hosei University, Koganei, Tokyo 184-8584, Japan ³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ⁶Division of Natural Science, International Christian University, Mitaka, Tokyo 181-8585, Japan ⁷Accelerator Group, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan ⁸Department of Information Sciences, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan ⁹Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578, Japan ¹⁰Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan ¹¹Department of Physics, Saitama University, Saitama, Saitama 338-8570, Japan ¹²Center for Nuclear Study, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan (Received 14 January 2004; published 25 May 2004)

Effective Interaction

Key parameters of the *unified/common* analysis

• $\pi + \rho + g'$ model

$$V_{\rm eff}(\boldsymbol{q},\omega) = V_{\pi}(\boldsymbol{q},\omega) + V_{\rho}(\boldsymbol{q},\omega) + V_{\rm LM}$$

spin-longitudinal (π)

Landau-Migdal (LM) parameters

$$V_{\rm LM} = \frac{f_{\pi NN}^2}{m_{\pi}^2} \left\{ g_{NN}' (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \right\}$$

A copy of Prof. Ichimura's handwritten slides

$$+\frac{f_{\pi N\Delta}}{f_{\pi NN}}g'_{N\Delta}\left[\left((\boldsymbol{\tau}_{1}\cdot\boldsymbol{T}_{2})(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{S}_{2})+(\boldsymbol{\tau}_{1}\cdot\boldsymbol{T}_{2}^{\dagger})(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{S}_{2}^{\dagger})\right)+(1\leftrightarrow2)\right]\\+\left(\frac{f_{\pi\Delta\Delta}}{f_{\pi NN}}\right)^{2}g'_{\Delta\Delta}\left[\left((\boldsymbol{T}_{1}\cdot\boldsymbol{T}_{2})(\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2})+(\boldsymbol{T}_{1}\cdot\boldsymbol{T}_{2}^{\dagger})(\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2}^{\dagger})\right)+\text{h.c.}\right]\right\}\delta(\boldsymbol{r}_{1}-\boldsymbol{r}_{2})$$

 $*g'_{\Delta\Delta}$ is fixed to be 0.5 because its dependence is known to be small.

GTGR Spectrum

Experiment: ⁹⁰Zr(p,n)⁹⁰Nb at 295 MeV

- Prominent GTGR peak
- GT (L=0) contribution is extracted by MDA
- GT strength, B(GT), is deduced with proportionality ansatz

Comparison with theory

- GTGR peak position
 - Strongly depends on g'NN

 $g'_{NN} = 0.6 \pm 0.1$

• Weak $g'_{N\Delta}$ dependence

GT Quenching Factor Q

GT quenching factor Q

- $Q = 0.86 \pm 0.07 \leftarrow$ from MD analysis
 - 2p2h effects are dominant

Q evaluated in **RPA**

- Determine the coupling to Δ
- Larger $g'_{N\Delta} \rightarrow$ Stronger coupling
 - Strength becomes small (quenched)
 [Strength moves to Δ region]
- Q strongly depends on $g'_{N\Delta}$

 $g'_{N\Delta}=0.35\pm0.16$

- Weak g'_{NN} dependence

Spin-Longitudinal (Pionic) *ID*_q **Enhancement**

Experiment ($q = 1.7 \text{ fm}^{-1}$)

- ¹²C(p,n) at RCNP
 - T_p=346 MeV and θ =22°
- ¹²C(p,n) at LAMPF
 - + T_p=494 MeV and θ =18°

Comparison with theory

- DWIA + two-step
- QES peak depends on g'NN
 - g'_{NN} = 0.6-0.7
- Enhancement depends on $g'_{\mathsf{N}\!\Delta}$
 - $g'_{N\Delta} = 0.2-0.4$

$$g'_{NN} \approx 0.7, \quad g'_{N\Delta} \approx 0.3 \iff g'_{NN} = 0.6 \pm 0.1, \quad g'_{N\Delta} = 0.35 \pm 0.16$$
 $q \simeq 1.7 \, {\rm fm}^{-1} \qquad \qquad q = 0 \, {\rm fm}^{-1}$

Ichimura-san's summary in SPIN2004

In summary, our unified approach leads to a common set of the LM parameters, $g'_{NN}=0.6-0.7$ and $g'_{N\Lambda}=0.2-0.4$ for the above contrasting phenomena.

Unified understanding of nuclear spin responses in wide (q, ω) region with just wo parameters, g'_{NN} and g'_{NA}

trieste october 10 16 2004

Î

Spin-isospin responses for unstable nuclei

B(GT) and Landau-Migdal parameter g'_{NN} in ¹³²Sn

J. Yasuda, M. Sasano, TW et al., Phys. Rev. Lett. 121, 132501 (2018).

GT giant resonance (GTGR) is observed for ¹³²Sn (doubly-magic unstable nuclei)

GTGR peak is sensitive to g'NN

- Ratio of the bump to the main peak is also sensitive to $g'_{\mbox{\scriptsize NN}}$

 $g^\prime_{NN}=0.68\pm0.07$

* g'_{NN} is constant for isospin asymmetry (N-Z)/A of 0.11(⁹⁰Zr) to 0.24(¹³²Sn)

Experimental results

Gamow-Teller resonances have been *successfully observed* for ⁸He and ¹²Be

M. Kobayashi et al., JPS Conf. Proc. 1, 013034 (2014). courtesy of K. Yako

Collectivity in (N-Z)/A > 0.21; Very neutron-rich nuclei

Data are consistent with predictions employing g'_{NN}=0.6±0.1

 \rightarrow Suggests the constancy of residual interaction for up to (N-Z)/A=0.5 (very neutron-rich)

NEW reaction probe for pionic 0- state

Ichimura-san's legacy will live on

Ichimura-san's work laid the grounds for

- the unified understanding of spin-isospin responses
- the analysis of experimental data using his computer codes
 - CRDW : DWIA calculation
 - RESPQ : Spin-isospin response calculation

Computer Programs	•.•.
by M.Ichimura	
CRDW is the abbreviation for Continuum RPA + DWIA. for the nucleon induced inelastic and charge exchange	This is a computer program, which perform a DWIA calculation e reactions to continuum final states as well as discrete states.
 Manual (PDF/259kb) Formalism (PDF/211kb) 	

RESPQ

by M.Ichimura

RESPQ is a computer program, which calculate the isovector spin-scalar, and spin-vector response functions of nuclei as a function of the transferred momentum q and energy ω including Δ isobar degrees of freedom.

RIKEN Nishina Center for Accelerator-Based Science

Manual (PDF/262kb)
Source codes (65kb)

Source codes (243kb)