Progress on Proton Charge Radius Measurements

A. Gasparian NC A&T State University, NC USA

Outline

- methods of proton radius measurement
- the proton radius puzzle
- PRad experiment and the results
- new experiments
- summary and outlook

Proton Charge Radius

One of the most fundamental quantities in physics:

- atomic physics:
 - ✓ precision atomic spectroscopy (QED, Lamb shifts, Rydberg constant R_∞);
 - \checkmark ~ $r_{\rm p}$ is strongly correlated to $R_{\rm \infty}$
- nuclear physics:
 - QCD, test of nuclear/particle models
- connects atomic and subatomic physics.

Methods to measure the proton rms charge radius (r_p):

- Hydrogen spectroscopy (lepton-proton bound state, Atomic Physics):
 - ordinary hydrogen
 - muonic hydrogen
- Lepton-proton elastic scattering (nuclear physics):
 - ep- elastic scattering (Mainz-A1, PRad, ...)
 - μp- elastic scattering (MUSE, AMBER ...)

Proton Radius from $ep \rightarrow ep$ Scattering Experiments

 In the limit of first Born approximation the elastic *ep* scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

• Structureless proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G_E and G_M can be extracted using Rosenbluth separation
- for extremely low Q², the cross section is dominated by G_E
- Taylor expansion of G_E at low Q²

$$G_{E}^{p}(Q^{2}) = 1 - \frac{Q^{2}}{6} \langle r^{2} \rangle + \frac{Q^{4}}{120} \langle r^{4} \rangle + \dots$$

definition of the proton rms charge radius

Mainz low Q² data set Phys. Rev. C 93, 065207, 2016

A. Gasparian

 $\langle r^2 \rangle$

derivative at $Q^2 = 0$:

 $O^2 = 0$

Proton Radius from Hydrogen Spectroscopy Experiments

- Difference between energy levels has been measured
 - ✓ with accuracy of 1.4 part in 10¹⁴
 - ✓ using atomic cesium as a frequency standard
 - \checkmark also yields the Rydberg constant, R_{∞}

- electron in S states is sometimes inside the proton.
 - S-states are shifted by the size of proton
 - shift is proportional to the size of the proton
- in P states electron is not inside the proton.
- P-S transitions better for proton radius measurement

The First Proton Charge Radius Measurements

- Robert Hofstadter, experiments in 1955-1956
 - ep-elastic scattering
 - E_e = 188 MeV electron beam
 - at Stanford University
- Nobel prize in 1961:

"for his pioneering studies of electron scattering in atomic nuclei and for his consequent discoveries concerning the *structure of nucleons*"

"proton has a diameter of 0.74 \mp 0.24 x 10⁻¹³ cm"

 $r_p = 0.74 \text{ fm}$ with a 32% uncertainty

Hofstadter, McAllister, Phys. Rev. 98, 217 (1955). Hofstadter, McAllister, Phys. Rev. 102, 851 (1956)

- Over 50 years of experimentation!
 - ✓ started from 0.74 fm
 - ended to 0.895 fm by 2010.
 - where we are now ???

Proton Charge Radius vs. Time (before 2010)

e-p scattering: Hydrogen spectroscopy: 0.895(18) fm ($\sigma_r = 2\%$) 0.8760(78) fm ($\sigma_r = 0.9\%$)

Proton Radius before the Puzzle

Very good agreement between ep-scattering and H-spectroscopy results !

New method: Muonic Hydrogen Precision Spectroscopy

- muon is ~200 times heavier than electron, then muon is ~ 200 closer to the proton.
- Transition energy difference, ΔE : $\Delta E \sim (\text{probability of the lepton to be inside of proton})$ $\sim (\alpha r_p)^3 m_r^3$, with m_r - the reduced mass: $m_r = 186 m_e$
 - ✓ µ is ~ $8x10^6$ more sensitive to the Proton Radius !!!
- Lamb shift in μ H: $\Delta E = 206.0668(25) - 5.2275(10) R_p^2 \text{ meV}$ proton size is ~2% correction to μ H Lamb shift.
- Two experiments performed at PSI (CREMA collaboration) for proton radius in 2010 and 2013 with ~10 times higher precision (≤ 0.1%) compered to all previous experiments.

Muonic Hydrogen Experiments

- most of µH atoms are formed with n~ 14
- 99% of them de-excite to 1S state
- 1% ends in metastable 2S state
- 6 μ m laser pulse induces a 2S \rightarrow 2P transition
- 2P state decay to 1S ground state (1.9 KeV Xrays, used in coincidence with the laser)
- the proton radius, r_p is extracted from the laser frequency spectrum.

from R. Pohl

R. Pohl, et al., Nature 466, 213 (2010): A. Antognini, et al., Science 339, 417 (2013):

$0.8409 \pm 0.0004 \text{ fm}$ $0.84184 \pm 0.00067 \text{ fm}$

A. Gasparian

The Proton Radius Puzzle

Possible Resolutions to the Proton Radius Puzzle

- Some initial open questions about QED calculations:
 - additional corrections to muonic-hydrogen.
 - missing contributions to electronic-hydrogen.
 - higher moments in electric form factor;
 - ۰...
- Is the ep-interaction the same as µp-interaction (the lepton universality principle)?
- New Physics (forces) beyond the Standard Model?
 - many models, discussions, suggestions ...
- Potential solutions:
 - need new high precision, high accuracy experiments:
 - ✓ ep-scattering experiments:
 - > reaching extremely low Q^2 range (10⁻⁴ Gev/c²)
 - possibly with new independent methods

- PRad at JLab
- measure absolute cross sections in ONE experimental setting!
- > MUSE at PSI, ISR at Mainz, ULQ² in Japan, AMBER at CERN ...
- ✓ ordinary hydrogen spectroscopy experiments:
 - > York University in Canada, LKB in Paris, France, CREMA in Germany ...

Not found Not found Not significant

Not found yet

Two New Regular Hydrogen Spectroscopy Experiments

• Garching, Germany, regular hydrogen (2017):

cryogenic beam of H atoms (at 5.8 K)

2S – 4P transition (also 1S - 2S used)

 $r_p = 0.8335(95) \text{ fm}$ $R_{\infty} = 10\ 973\ 731.568\ 076(96) \text{ m}^{-1}$

Beyer et al., Science 358, 79 (2017)

- Paris, France, regular hydrogen (2018):
 - room temperature H atomic beam
 - ✓ 1S 3S two photon transition frequency
 - with 1S 2S transition from Garching (2011)
 - second order Dopler effect ???

 $r_p = 0.877(13) \text{ fm}$ $R_{\infty} = 10\ 973\ 731.568\ 53(14)\ \text{m}^{-1}$

Fleurbaey et al. PRL 120, 183001 (2018)

A. Gasparian

The Proton Radius Puzzle (in 2018)

One More from Regular Hydrogen Spectroscopy (York University, Canada)

- York University, Canada, regular hydrogen (2019):
 - room temperature H atomic beam
 - \checkmark 2S_{1/2} (F=0) 2P_{1/2} (F=1) transition frequency
 - Rydberg constant from other experiments
 - fast beam of hydrogen atoms (from proton beam)
 - two different radio frequencies

 $r_p = 0.833(10) \text{ fm}$

Bezginov et al., Science 365, 1007 (2019)

The Proton Radius Puzzle (in 2019)

The Recent Regular Hydrogen Spectroscopy Experiment

- Garching, Munich, Germany, regular hydrogen (2020):
 - cold H atomic beam
 - \checkmark 1S 3S transition frequency (the same as Paris-2018)
 - two-photon direct frequency comb technique
 - 1S 2S transition was also used from the same group

 $r_p = 0.8482(38) \text{ fm}$

Grinin et al., Science 370, 1061 (2020)

The Proton Radius Puzzle (in 2020, before PRad)

Experiment	Type	$\operatorname{Transition}(s)$	$\sqrt{< r_{Ep}^2 >}$ (fm)	$r_{\infty} (\mathrm{m}^{-1})$
Pohl 2010	μH	$2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}$	0.84184(67)	
Antognini 2013	μH	$2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}$	0.84087(39)	
		$2S_{1/2}^{F=0} - 2P_{3/2}^{F=1}$		
Beyer 2017	Н	2S - 4P	0.8335(95)	$10 \ 973 \ 731.568 \ 076 \ (96)$
		with $(1S - 2S)$		
Fleurbaey 2018	Н	1S - 3S	0.877(13)	$10 \ 973 \ 731.568 \ 53(14)$
		with $(1S - 2S)$		
Bezginov 2019	Н	$2S_{1/2} - 2P_{1/2}$	0.833(10)	
Grinin 2020	Н	1S - 3S	0.8482(38)	$10\ 973\ 731.568\ 226(38)$
		with $(1S - 2S)$		

A. Gasparian

Planning a New ep→ep Scattering Experiment

- Practically all ep-scattering experiments were performed with magnetic spectrometers and LH₂ targets!
 - high resolutions but, very small angular and momentum acceptances,
 - need many different settings of angle (Θ_e), energies (E_e, E'_e) to cover a reasonable Q² fitting interval
 - limitation on minimum Q²: 10⁻³ GeV/C²
 - * limits on accuracy of cross sections $(d\sigma/d\Omega)$: ~ 2 ÷ 3%
 - statistics is not a problem (<0.2%)</p>
 - control of systematic uncertainties???

• PRad experimental approach:

- ✓ use large acceptance, high resolution el.-magnetic calorimeter (HyCal)
- ✓ all measurements with one experimental setting: $\vartheta_e = 0.6^0 7.0^0$
- ✓ reach to smaller Q² range: $(Q^2 = 2x10^{-4} 6x10^{-2})$ GeV/c²
- windowless H2 gas flow target (minimize experimental background)
- ✓ simultaneous detection of ee → ee Moller scattering process (best known control of systematics).

PRad Experimental Setup in Hall B at JLab (schematic view)

- Main detector elements:
 - > windowless H_2 gas flow target
 - PrimEx HyCal calorimeter
 - > vacuum box with one thin window at HyCal end
 - > X,Y GEM detectors on front of HyCal

- Beam line equipment:
 - standard beam line elements (0.1 50 nA)
 - photon tagger for HyCal calibration
 - collimator box (6.4 mm collimator for photon beam, 12.7 mm for e⁻ beam halo "cleanup")
 - Harp 2H00 I

PRad Experimental Apparatus

A. Gasparian

SPIN2021

Extracted ep→ep Elastic Differential Cross Sections

- Extracted differential cross sections vs. Q², with 1.1 and 2 GeV data.
- Statistical uncertainty: ~0.2% for 1.1 GeV and ~0.15% for 2.2 GeV per point.
- Systematic uncertainties: 0.3% 0.5% for 1.1 GeV and 0.3 1.1% for 2.2 GeV per point.

Extracted Proton Electric Form Factor, G_E vs. Q²

 G'_{E} as normalized electric Form factor:

$$n_1 f(Q^2)$$
, for 1GeV data
 $n_2 f(Q^2)$, for 2GeV data
 G_E/n_1 , for 1GeV data
 G_E/n_2 , for 2GeV data

Using rational (1,1)
$$f(Q^{2}) = \frac{1 + p_{1}Q^{2}}{1 + p_{2}Q^{2}}$$

 n_1 = 1.0002 +/- 0.0002(stat.) +/- 0.0020 (syst.),

 $n_2 = 0.9983 + -0.0002(\text{stat.}) + -0.0013 (\text{syst.})$

Proton Electric Form Factor (PRad Results)

Proton Electric Form Factor G'_F

$$\begin{array}{l} n_1 \mbox{ and } n_2 \mbox{ obtained by fitting PRad } G_{\rm E} \mbox{ to } \\ G'_{\rm E} \mbox{ as normalized electric Form factor:} \\ PRad \mbox{ fit shown as } f(Q^2) \\ \end{array} \begin{array}{l} n_1 f(Q^2), \mbox{ for 1GeV data} \\ G_{E}/n_2, \mbox{ for 2GeV data} \\ G_{E}/n_2, \mbox{ for 2GeV data} \\ \end{array} \begin{array}{l} \mbox{ Using rational (1,1)} \\ f(Q^2) = \frac{1 + p_1 Q^2}{1 + p_2 Q^2} \\ \hline 1 + p_2 Q^2 \end{array}$$

Proton Electric Form Factor G'_E

PRad final result: $R_p = 0.831 \pm 0.007$ (stat.) ± 0.012 (syst.) fm

SPIN2021

Proton Radius at the Time of PRad Publication (2019)

SPIN2021

New Experiments in Progress: PRad-II at JLab

- PRad-II is planning to improve the PRad accuracy by a factor of 3.8 (to $\pm 0.43\%$ on r_p) by:
 - Significantly improved statistics (4 times less uncertainties);
 - Hardware upgrades:
 - > adding tracking capability (second plane of GEM/ μ Rwell detectors).
 - small-size scintillator detectors just downstream the target to veto Moller electrons to reach the 10⁻⁵ GeV² Q² range.
 - > adding new 'beam halo blacker" just before the Photon Tagger.
 - > upgrade DAQ/electronics to fADC based electronics:
 - HyCal upgrade to all PbWO₄ crystals, essential for ep-inelastic background suppression at relatively higher Q² range (10⁻² GeV²) and uniformity over full acceptance.

PRad-II Experimental Setup (Side View)

PRad-II Expected Accuracy

- Approved by Jlab's PAC-48 in August, 2020
- Expected total uncertainty: 0.43% (0.0036 fm)

A. Gasparian et al. arXiv:2009.10510

New Experiments in Progress: MUSE Experiment at PSI

- Simultaneous $\mu^{\mp}p$ and $e^{\mp}p$ elastic scattering cross sections:
 - P_{beam} = 115, 153, 210 MeV/c
 - scattering angle: 20⁰ 100⁰
 - determine r_{Ep}
 - test lepton universality
 - measure two photon exchange (TPE)
 - > delayed ~ 1.5 years due to COVID
 - Currently at PSI re-establishing all systems in preparation for production data taking, starting this fall, through 2023.

New Experiments in Progress: ULQ² Experiment at Tohoku University

- ep-elastic scattering experiment with a magnetic spectrometer:
 - P_{beam} = 20 60 MeV/c
 - scattering angle: $30^0 150^0$
 - target: CH₂
 - □ Q² range: 3x10⁻⁴ 8x10⁻³ GeV/c²
 - Current status:
 - 1st spectrometer fully commissioned
 - 2nd spectrometer installed, commissioning in progress
 - Scattering chamber under construction, installation in December
 - Physics run from next April.

New Experiments in Preparation

PRES at MAMI Mainz:

High pressure hydrogen gas TPC detector

- > $ep \rightarrow ep$ scattering at moderate energies;
- detection of recoil proton only;
- promising to reach Q² 10⁻⁵ GeV/c² range;
- extraction of the proton radius (< 0.6%);
- > first collaboration meeting in March, 2020.

• AMBER at CERN:

The same high pressure hydrogen TPC detector

- > $\mu p \rightarrow \mu p$ scattering at high energies;
- Q² range: 10⁻⁴ 1 GeV²
- detection of the recoil proton;
- extract the proton radius;
- > in planning stage.

Planning Experiments: MAGIX@MESA Experiment at Mainz

- ep-elastic scattering experiment with a magnetic spectrometer:
 - □ P_{beam} = 20 105 MeV/c
 - scattering angle: $30^0 150^0$
 - target: H₂ jet
 - Q² range: ~10⁻⁴ 8x10⁻² GeV/c²
 - Current status:
 - In the planning stage

		-	-		-
Experiment	Beam	Laboratory	$Q^2 \; ({\rm GeV/c})^2$	$\delta r_p \ (\text{fm})$	Status
MUSE	e^{\pm}, μ^{\pm}	PSI	0.0015 - 0.08	0.01	Ongoing
AMBER	μ^{\pm}	CERN	0.001 - 0.04	0.01	Future
PRad-II	e^-	Jefferson Lab	4×10^{-5} - 6×10^{-2}	0.0036	Future
PRES	e^-	Mainz	0.001 - 0.04	0.6% (rel.)	Future
A1@MAMI (jet target)	e^-	Mainz	0.004 - 0.085		Ongoing
MAGIX@MESA	e ⁻	Mainz	$\geq 10^{-4} - 0.085$		Future
ULQ^2	e^-	Tohoku University	3×10^{-4} - 8×10^{-3}	$\sim 1\%$ (rel.)	Future

Summary and Outlook

- In last decade major progress made in resolving the proton charge radius *puzzle*.
- Most of the recent ordinary hydrogen spectroscopy measurements are consistent with muonic results (smaller radius).
- The result from the recent PRad ep-scattering experiment also consistent with muonic results (smaller radius).
 - ✓ first ep-scattering experiment using a non-magnetic spectrometer;
 - ✓ data in a large Q² range have been recorded with the same experimental setting, $[2x10^{-4} \div 6x10^{-2}]$ GeV/C².
 - ✓ lowest Q^2 range (~10⁻⁴ GeV/C²) has been reached for the first time in ep-scattering experiments.
- PRad results disagree with all modern ep-scattering experiments.
- Is the "*Proton Radius Puzzle*" solved???
 - > new and further improved measurements from lepton-scattering experiments are needed:
 - PRad-II at JLab, MUSE at PSI, ULQ² at Tohoku University, AMBER at CERN, PRES at MAMI, MAGIX@MESA ...

my research work is supported in part by NSF award: PHY-2111233

Thank you!

A. Gasparian

(Re)analysis of e-p Scattering Data

e-p Scattering: Magnetic Spectrometer vs. Calorimetric Method

SPIN2021

The PRad Final Result on the Radius

